Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 系統工程暨造船學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/21045
Title: Discussion of the Fluid Acceleration Quality of a Ducted Propulsion System on the Propulsive Performance
Authors: Kao, Jui-Hsiang 
Liao, Yi-Fan
Keywords: Ducted propellers;accelerating nozzle;hull efficiency;relative rotative efficiency;effective wake;thrust deduction factor
Issue Date: 1-Jan-2022
Publisher: TECH SCIENCE PRESS
Journal Volume: 130
Journal Issue: 3
Start page/Pages: 1325-1348
Source: CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES
Abstract: 
This paper focuses on the ducted propulsion with the accelerating nozzle, and discusses the influence of its fluid acceleration quality on its propulsive performances, including the hull efficiency, the relative rotative efficiency, the effective wake, and the thrust deduction factor. An actual ducted propulsion system is used as an example for computational analysis. The computational conditions are divided into four combinations, which are provided with different propeller pitches, cambers, and duct lengths. The method applied in this study is the Computational Fluid Dynamics (CFD) technology, and the contents of the calculation include the hull's viscous resistance, the wave-making resistance, the propeller performance curve, and the self-propulsion simulation in order to obtain the ship's effective wake, thrust deduction factor, hull efficiency, and relative rotative efficiency. The performance curve of the propeller and resistance estimation results are compared with the experimental values for determining the correctness of the self-propulsion simulation. According to the computational analysis, it is known that increasing the propeller pitch cannot effectively increase the hull efficiency. The duct acceleration quality can be reduced by shortening the duct length; hence, when the effective wake fraction and thrust deduction factor decrease, the hull efficiency is increased. In addition, the pressure inside the duct is relatively low if the acceleration quality of the duct is too high, which is unfavorable for controlling the propeller cavitation. Moreover, if the hull bottom in front of the propeller is tapered up from the front to the back at an overly steep angle, the thrust deduction factor will be too large and lead to a relatively low hull efficiency.
URI: http://scholars.ntou.edu.tw/handle/123456789/21045
ISSN: 1526-1492
DOI: 10.32604/cmes.2022.016212
Appears in Collections:系統工程暨造船學系

Show full item record

Page view(s)

169
Last Week
3
Last month
5
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback