Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/22008
標題: FN-Net: A lightweight CNN-based architecture for fabric defect detection with adaptive threshold-based class determination
作者: Suryarasmi, Anindita
Chang, Chin-Chun 
Akhmalia, Rania
Marshallia, Maysa
Wang, Wei-Jen
Liang, Deron
關鍵字: Artificial intelligence;Lightweight convolutional neural network;Fabric manufacturing;AOI;Defect detection
公開日期: 1-七月-2022
出版社: ELSEVIER
卷: 73
來源出版物: DISPLAYS
摘要: 
Deep learning technologies based on Convolution Neural Networks (CNN) have been widely used in fabric defect detection. On-site CNN model training and defect detection offer several desirable properties for the fabric manufactures, such as better data security and less connectivity requirements, when compared with the on-cloud training approach. However, computers installed at the manufacturing site are usually industrial computers with limited computing power, which are not able to run many effective CNN models. A lightweight CNN model should be used in this scenario, in order to find a balance point among defect detection, efficiency, memory consumption and model training time. This paper presents a lightweight CNN-based architecture for fabric defect detection. Compared with VGG16, MobileNetV2, EfficientNet, and DenseNet as state-of-the-art architectures, the proposed architecture, namely FN-Net, can perform training 3 to 33 times as fast as these architectures with less graphics processing unit and memory consumption. With adaptive class determination, FN-Net has an average F1 score 0.86, while VGG16 and EfficientNet as the best and the worst among the baseline models have 0.81 and 0.50, respectively.
URI: http://scholars.ntou.edu.tw/handle/123456789/22008
ISSN: 0141-9382
DOI: 10.1016/j.displa.2022.102241
顯示於:資訊工程學系

顯示文件完整紀錄

WEB OF SCIENCETM
Citations

2
上周
0
上個月
0
checked on 2023/6/27

Page view(s)

138
上周
0
上個月
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋