Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/22048
DC FieldValueLanguage
dc.contributor.authorYen, Chih-Taen_US
dc.contributor.authorChen, Un-Hungen_US
dc.contributor.authorWang, Guo-Changen_US
dc.contributor.authorChen, Zong-Xianen_US
dc.date.accessioned2022-08-17T02:42:43Z-
dc.date.available2022-08-17T02:42:43Z-
dc.date.issued2022-06-01-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/22048-
dc.description.abstractThis study proposed a noninvasive blood glucose estimation system based on dual-wavelength photoplethysmography (PPG) and bioelectrical impedance measuring technology that can avoid the discomfort created by conventional invasive blood glucose measurement methods while accurately estimating blood glucose. The measured PPG signals are converted into mean, variance, skewness, kurtosis, standard deviation, and information entropy. The data obtained by bioelectrical impedance measuring consist of the real part, imaginary part, phase, and amplitude size of 11 types of frequencies, which are converted into features through principal component analyses. After combining the input of seven physiological features, the blood glucose value is finally obtained as the input of the back-propagation neural network (BPNN). To confirm the robustness of the system operation, this study collected data from 40 volunteers and established a database. From the experimental results, the system has a mean squared error of 40.736, a root mean squared error of 6.3824, a mean absolute error of 5.0896, a mean absolute relative difference of 4.4321%, and a coefficient of determination (R Squared, R-2) of 0.997, all of which fall within the clinically accurate region A in the Clarke error grid analyses.en_US
dc.language.isoEnglishen_US
dc.publisherMDPIen_US
dc.relation.ispartofSENSORSen_US
dc.subjectblood glucose estimationen_US
dc.subjectphotoplethysmography (PPG)en_US
dc.subjectbioelectrical impedanceen_US
dc.subjectprincipal component analysis (PCA)en_US
dc.subjectback-propagation neural network (BPNN)en_US
dc.titleNon-Invasive Blood Glucose Estimation System Based on a Neural Network with Dual-Wavelength Photoplethysmography and Bioelectrical Impedance Measuringen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/s22124452-
dc.identifier.isiWOS:000817492400001-
dc.relation.journalvolume22en_US
dc.relation.journalissue12en_US
dc.identifier.eissn1424-8220-
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1English-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
Appears in Collections:電機工程學系
Show simple item record

WEB OF SCIENCETM
Citations

1
Last Week
1
Last month
0
checked on Jun 27, 2023

Page view(s)

253
Last Week
2
Last month
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback