Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 機械與機電工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/22071
DC FieldValueLanguage
dc.contributor.authorSu, Heng-Yien_US
dc.contributor.authorTang, Chenen_US
dc.date.accessioned2022-08-17T02:42:48Z-
dc.date.available2022-08-17T02:42:48Z-
dc.date.issued2022-07-
dc.identifier.issn1949-3029-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/22071-
dc.description.abstractA reliable approach to forecasting solar energy generation using deep learning (DL) models is presented. The approach relies on a prediction-correction (PC) framework. It is composed of a primary model that performs preliminary prediction, followed by a secondary model that is charged with the task of dynamic error compensation (DEC), based on hierarchical residual (HR) learning and Choquet fuzzy integral (CFI) technique. An improved gated recurrent unit (IGRU) is designed and integrated into the PC framework. Moreover, a practical algorithm is developed to facilitate the calculation of the CFI aggregation. Empirical studies on real-world data sets are presented, illustrating the gains in accuracy and reliability of the proposed approach.en_US
dc.language.isoen_USen_US
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INCen_US
dc.relation.ispartofIEEE T SUSTAIN ENERGen_US
dc.subjectPredictive modelsen_US
dc.subjectComputational modelingen_US
dc.subjectLogic gatesen_US
dc.subjectReliabilityen_US
dc.subjectForecastingen_US
dc.subjectSolar energyen_US
dc.subjectPrediction algorithmsen_US
dc.subjectChoquet integralen_US
dc.subjectdeep learningen_US
dc.subjectgated recurrent uniten_US
dc.subjecthierarchical learningen_US
dc.subjectresidual correctionen_US
dc.subjectsolar energyen_US
dc.titleDynamic-Error-Compensation-Assisted Deep Learning Framework for Solar Power Forecastingen_US
dc.typejournal articleen_US
dc.identifier.doi10.1109/TSTE.2022.3156437-
dc.identifier.isiWOS:000814695900053-
dc.relation.journalvolume13en_US
dc.relation.journalissue3en_US
dc.relation.pages1865-1868en_US
dc.identifier.eissn1949-3037-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Mechanical and Mechatronic Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
Appears in Collections:機械與機電工程學系
07 AFFORDABLE & CLEAN ENERGY
Show simple item record

WEB OF SCIENCETM
Citations

2
Last Week
0
Last month
0
checked on Jun 27, 2023

Page view(s)

280
Last Week
0
Last month
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback