Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/22148
標題: Estimation of Beat-by-Beat Blood Pressure and Heart Rate From ECG and PPG Using a Fine-Tuned Deep CNN Model
作者: Yen, Chih-Ta 
Chang, Sheng-Nan
Liao, Cheng-Hong
關鍵字: PHOTOPLETHYSMOGRAPHIC SIGNALS;WAVE-FORM
公開日期: 25-四月-2022
出版社: IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
卷: 10
起(迄)頁: 85459-85469
來源出版物: IEEE ACCESS
摘要: 
Given that current cuffless blood pressure (BP) measurement technologies feature acceptable overall accuracy, this paper proposed a sufficiently accurate cuffless BP estimation method based on photoplethysmography (PPG) and electrocardiography (ECG) signals. This study used single-channel PPG and ECG signals to estimate heart rate (HR), diastolic BP (DBP), and systolic BP (SBP). A modified long-term recurrent convolutional network comprising a multi-scale convolution network and a long short-term memory (LSTM) network was used to develop a deep learning model for accurately estimating BP and HR. The PPG and ECG signal data of 1551 patients were obtained from the Data Sets-UCI Machine Learning Repository of the University of California, Irvine. The study dataset comprised ECG, PPG, and arterial BP (ABP) signals from the PhysioNet MIMIC II dataset. The original signals were processed by removing noise and artifacts. The aforementioned dataset contains 12,000 records in a hierarchical data format, with each record containing three signals, namely 125-Hz ECG signals from channel II (ECG lead II), 125-Hz PPG signals from the fingertip, and 125-Hz invasive ABP signals. To validate the stability and performance of the developed model, ten-fold cross-validation was conducted. The mean absolute error (MAE) (standard deviation (SD)) values of the developed model for predicting SBP, DBP, and HR were 2.24 mmHg (3.59 mmHg), 1.40 mmHg (2.56 mmHg), and 0.84 bpm (2.23 bpm), respectively. In addition, the estimated SBP and DBP values satisfied the standards of the British Hypertension Society and the Association for the Advancement of Medical Instrumentation. Compared with the methods proposed in other studies, the deep learning model developed in this study required a lower number of layers to provide accurate SBP, DBP, and HR estimations. The results of this study confirmed the effectiveness of the proposed deep learning architecture.
URI: http://scholars.ntou.edu.tw/handle/123456789/22148
ISSN: 2169-3536
DOI: 10.1109/ACCESS.2022.3195857
顯示於:03 GOOD HEALTH AND WELL-BEING
電機工程學系

顯示文件完整紀錄

Page view(s)

196
上周
0
上個月
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋