Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋中心
  3. 海洋中心
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/22337
Title: To Solve Forward and Backward Nonlocal Wave Problems with Pascal Bases Automatically Satisfying the Specified Conditions
Authors: Liu, Chein-Shan 
Chang, Chih-Wen
Chen, Yung-Wei 
Shen, Jian-Hung
Keywords: backward nonlocal wave equation;Pascal bases automatically satisfying specified conditions;integral boundary condition;nonlocal boundary shape function
Issue Date: 1-Sep-2022
Publisher: MDPI
Journal Volume: 10
Journal Issue: 17
Source: MATHEMATICS
Abstract: 
In this paper, the numerical solutions of the backward and forward non-homogeneous wave problems are derived to address the nonlocal boundary conditions. When boundary conditions are not set on the boundaries, numerical instability occurs, and the solution may have a significant boundary error. For this reason, it is challenging to solve such nonlinear problems by conventional numerical methods. First, we derive a nonlocal boundary shape function (NLBSF) from incorporating the Pascal triangle as free functions; hence, the new, two-parameter Pascal bases are created to automatically satisfy the specified conditions for the solution. To satisfy the wave equation in the domain by the collocation method, the solution of the forward nonlocal wave problem can be quickly obtained with high precision. For the backward nonlocal wave problem, we construct the corresponding NLBSF and Pascal bases, which exactly implement two final time conditions, a left-boundary condition and a nonlocal boundary condition; in addition, the numerical method for the backward nonlocal wave problem under two-side, nonlocal boundary conditions is also developed. Nine numerical examples, including forward and backward problems, are tested, demonstrating that this scheme is more effective and stable. Even for boundary conditions with a large noise at final time, the solution recovered in the entire domain for the backward nonlocal wave problem is accurate and stable. The accuracy and efficiency of the method are validated by comparing the estimation results with the existing literature.
URI: http://scholars.ntou.edu.tw/handle/123456789/22337
DOI: 10.3390/math10173112
Appears in Collections:海洋中心
輪機工程學系

Show full item record

Page view(s)

160
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback