Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 人文社會科學院
  3. 教育研究所
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/22539
DC FieldValueLanguage
dc.contributor.authorLiang-Ting Tsaien_US
dc.contributor.authorChih-Chien Yangen_US
dc.date.accessioned2022-10-14T01:57:38Z-
dc.date.available2022-10-14T01:57:38Z-
dc.date.issued2012-09-
dc.identifier.issn0957-4174-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/22539-
dc.description.abstractThis study proposes the learning vector quantization estimated stratum weight (LVQ-ESW) method to interpolate missing group membership and weights in identifying the accuracy of measurement invariance (MI) in a stratified sampling survey. Survey data is rife with missing information, such as gender and race, which is critical for identifying MI, and in ensuring that conclusions from large-scale testing campaigns are accurate. In the current study, simulations were conducted to examine the accuracy and consistency of MI detection using multiple-group confirmatory factor analysis (MG-CFA) to compare different approaches for interpolating missing information. The results of the computerized simulations showed that the proposed method outperformed traditional methods, such as List-wise deletion, in terms of accurately and stably identifying MI. The implications for interpolating missing group membership and weights for survey research are discussed. (C) 2012 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.publisherERGAMON-ELSEVIER SCIENCE LTDen_US
dc.relation.ispartofEXPERT SYSTEMS WITH APPLICATIONSen_US
dc.subjectCONFIRMATORY FACTOR-ANALYSISen_US
dc.subjectMIMIC-MODELen_US
dc.subjectTESTSen_US
dc.titleImproving measurement invariance assessments in survey research with missing data by novel artificial neural networksen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.eswa.2012.02.048-
dc.identifier.isi000305863300013-
dc.relation.journalvolume39en_US
dc.relation.journalissue12en_US
dc.relation.pages10456-10464en_US
dc.identifier.eissn1873-6793en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Humanities and Social Sciences-
crisitem.author.deptInstitute of Education-
crisitem.author.deptTaiwan Marine Education Center-
crisitem.author.deptIntegration and Dissemination Section-
crisitem.author.deptTeacher Education Center-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Humanities and Social Sciences-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgTaiwan Marine Education Center-
crisitem.author.parentorgCollege of Humanities and Social Sciences-
Appears in Collections:教育研究所
Show simple item record

WEB OF SCIENCETM
Citations

4
Last Week
0
Last month
checked on Jun 27, 2023

Page view(s)

216
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback