Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 人文社會科學院
  3. 教育研究所
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/22633
DC FieldValueLanguage
dc.contributor.author蔡良庭en_US
dc.contributor.author楊志堅en_US
dc.date.accessioned2022-10-20T08:45:34Z-
dc.date.available2022-10-20T08:45:34Z-
dc.date.issued2004-12-
dc.identifier.issn1728-8231-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/22633-
dc.description.abstract本研究採電腦模擬探討不同訓練範例樣本數、學習速率及隱藏層個數對學習向量量化網路分類正確率之影響。在實驗設計上,先產生三種混合樣本資料,以比較在各種不同的實驗設計下,學習向量量化網路分類正確性之差異。結果發現不論為何種混合樣本資料,分類正確率會隨著訓練範例樣本數的增加而呈現遞增的趨勢。在學習速率方面則有一共同點為當學習速率0.1時,其模式之分類效果都是最差的;其餘學習速率的分類表現並無規則可循,亦無表現突出者。但當以不同隱藏層處理單元數進行模擬試驗所得結果,以隱藏層個數為2時,分類正確率都是最佳的。 The purpose of this study was to explore the effect of the different training samples, learning rate and numbers of hidden layers on the classified accuracy when using Learning vector Quantization to analysis. When the number of the training samples were on the two numbers, 200 and 250, the classified accuracy was irregular, and the difference between these two number was not significant. As a result, the classified accuracy of training samples were increasing while the training samples were increasing. By using the simulation testing method to compare the accuracy of learning rate, in any kind of mixed samples, when the learning rate was on 0.1, the classified accuracy was the worst; however the classified accuracy from other learning rates was irregular. When the number of hidden layers was 2, the classified accuracy was the best in any kind of mixed samples.en_US
dc.language.isoen_USen_US
dc.publisher臺中教育大學教育測驗統計研究所en_US
dc.relation.ispartof測驗統計年刊en_US
dc.subject類神經網路en_US
dc.subject學習向量量化網路en_US
dc.subject截尾常態分配en_US
dc.subjectNeural Networken_US
dc.subjectLearning Vector Quantizationen_US
dc.subjectTruncated Normal Distributionen_US
dc.title學習向量量化網路之模擬研究en_US
dc.title.alternativeA Simulation Study on Classified Accuracy for Learning Vector Quantizationen_US
dc.typejournal articleen_US
dc.identifier.doi10.6773/JRMS.200412.0269-
dc.relation.journalvolume12en_US
dc.relation.pages269 - 291en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Humanities and Social Sciences-
crisitem.author.deptInstitute of Education-
crisitem.author.deptTaiwan Marine Education Center-
crisitem.author.deptIntegration and Dissemination Section-
crisitem.author.deptTeacher Education Center-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Humanities and Social Sciences-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgTaiwan Marine Education Center-
crisitem.author.parentorgCollege of Humanities and Social Sciences-
Appears in Collections:教育研究所
Show simple item record

Page view(s)

132
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback