Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 系統工程暨造船學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/23598
標題: Experimental Investigation on Juncture Flow Associated with a Surface-Mounted Circular Cylinder Trailed by a Backward-Facing Step
作者: Yang, Chun-Yao
Chow, Yi-Chih 
關鍵字: juncture flow;horseshoe vortex (HSV);backward-facing step;flow-shearing effects;particle image velocimetry (PIV);PIV-based flow visualization
公開日期: 1-十月-2022
出版社: MDPI
卷: 10
期: 10
來源出版物: JOURNAL OF MARINE SCIENCE AND ENGINEERING
摘要: 
Juncture flows associated with surface-mounted obstacles can be characterized by a U-shaped tubular vortical flow known as a horseshoe vortex (HSV). Horseshoe vortices are usually detrimental to engineering applications. In order to identify a boundary geometry that may effectively reduce a HSV's strength for further design of HSV-reduction devices, or otherwise enhance it for further disaster prevention by avoiding such a geometry in design, the characteristics of HSVs influenced by external boundary geometries must first be understood. Thus, we experimentally investigated a juncture flow field associated with a fundamental geometry-a circular cylinder mounted perpendicular to a plane surface-with a trailing backward-facing step (BFS) representing a novel idea of downstream effects on upstream-formed flow structures. This setup is not only one of the simplest nonplanar geometries that generates flow features such as an unsteady separated shear layer that may considerably affect an HSV, but it is also a new attempt without prior knowledge. We used the particle image velocimetry (PIV) and PIV-based flow visualization techniques combined with a vortex-fitting algorithm to measure the juncture flow and identify the HSV and its kinematic modes at the low Reynolds number of 1166. We observed from the flow-visualization results regarding HSV's kinematic modes and their duration percentages as follows: (1) without the BFS: "oscillation with a small displacement" (98.6%) and "breakaway to roll-up" (1.4%); (2) with the BFS (step height/cylinder diameter = 1.5): "oscillation with a small displacement" (83.3%), "merging" (4.5%), and "mixed" (12.2%). It is clearly evident that the BFS increased the number and complexity of kinematic modes, i.e., the unsteadiness of the HSV. Moreover, the PIV results show that the BFS reduced HSV stretching, which resulted in increased vortex diameter by 8.24% and increased circulation by 6.37%, i.e., the strength of the HSV was enhanced by the BFS.
URI: http://scholars.ntou.edu.tw/handle/123456789/23598
DOI: 10.3390/jmse10101494
顯示於:系統工程暨造船學系

顯示文件完整紀錄

Page view(s)

163
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋