Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/23683
DC FieldValueLanguage
dc.contributor.authorSu, Yu-Shengen_US
dc.contributor.authorLin, Yu-Daen_US
dc.contributor.authorLiu, Tai-Quanen_US
dc.date.accessioned2023-02-15T01:17:55Z-
dc.date.available2023-02-15T01:17:55Z-
dc.date.issued2022-12-22-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/23683-
dc.description.abstractTo understand students' learning behaviors, this study uses machine learning technologies to analyze the data of interactive learning environments, and then predicts students' learning outcomes. This study adopted a variety of machine learning classification methods, quizzes, and programming system logs, found that students' learning characteristics were correlated with their learning performance when they encountered similar programming practice. In this study, we used random forest (RF), support vector machine (SVM), logistic regression (LR), and neural network (NN) algorithms to predict whether students would submit on time for the course. Among them, the NN algorithm showed the best prediction results. Education-related data can be predicted by machine learning techniques, and different machine learning models with different hyperparameters can be used to obtain better results.en_US
dc.language.isoEnglishen_US
dc.publisherFRONTIERS MEDIA SAen_US
dc.relation.ispartofFRONTIERS IN NEUROSCIENCEen_US
dc.subjectprogramming coursesen_US
dc.subjectmachine learning technologiesen_US
dc.subjectlearning featuresen_US
dc.subjectlearning performance predictionen_US
dc.subjectalgorithmsen_US
dc.titleApplying machine learning technologies to explore students' learning features and performance predictionen_US
dc.typejournal articleen_US
dc.identifier.doi10.3389/fnins.2022.1018005-
dc.identifier.isiWOS:000907756500001-
dc.relation.journalvolume16en_US
dc.identifier.eissn1662-453X-
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1English-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0002-1531-3363-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:資訊工程學系
Show simple item record

Page view(s)

104
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback