Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海運暨管理學院
  3. 輪機工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/23689
DC 欄位值語言
dc.contributor.authorChen, Yung-Weien_US
dc.contributor.authorShen, Jian-Hungen_US
dc.contributor.authorChang, Yen-Shenen_US
dc.contributor.authorTan, Ching-Chuanen_US
dc.date.accessioned2023-02-15T01:17:57Z-
dc.date.available2023-02-15T01:17:57Z-
dc.date.issued2023-01-01-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/23689-
dc.description.abstractIn this paper, an efficient and straightforward numerical procedure is constructed to solve multi-dimensional linear and nonlinear elliptic partial differential equations (PDEs). Although the numerical procedure for the constraint-type fictitious time integration method overcomes the numerical stability problem, the parameter's definition, numerical accuracy and computational efficiency have not been resolved, and the lack of initial guess values results in reduced computational efficiency. Therefore, the normalized two-point boundary value solution of the Lie-group shooting method is proposed and considered in the numerical procedure to avoid the problem of the initial guess value. Then, a space-time variable, including the minimal fictitious time step and convergence rate factor, is introduced to study the relationship between the initial guess value and convergence rate factor. Some benchmark numerical examples are tested. As the results show, this numerical procedure using the normalized boundary value solution can significantly converge within one step, and the numerical accuracy is better than that demonstrated in the previous literature.en_US
dc.language.isoEnglishen_US
dc.publisherMDPIen_US
dc.relation.ispartofMATHEMATICSen_US
dc.subjectboundary solution integrationen_US
dc.subjectnonlinear partial differential equationsen_US
dc.subjectfictitious time integration methoden_US
dc.subjectconstraint-type fictitious time integration methoden_US
dc.subjecttraditional gradient convergence methoden_US
dc.titleA Complete Procedure for a Constraint-Type Fictitious Time Integration Method to Solve Nonlinear Multi-Dimensional Elliptic Partial Differential Equationsen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/math11010213-
dc.identifier.isiWOS:000909391600001-
dc.relation.journalvolume11en_US
dc.relation.journalissue1en_US
dc.identifier.eissn2227-7390-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Maritime Science and Management-
crisitem.author.deptDepartment of Marine Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Maritime Science and Management-
顯示於:輪機工程學系
顯示文件簡單紀錄

Page view(s)

164
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋