Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海運暨管理學院
  3. 輪機工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/23689
DC FieldValueLanguage
dc.contributor.authorChen, Yung-Weien_US
dc.contributor.authorShen, Jian-Hungen_US
dc.contributor.authorChang, Yen-Shenen_US
dc.contributor.authorTan, Ching-Chuanen_US
dc.date.accessioned2023-02-15T01:17:57Z-
dc.date.available2023-02-15T01:17:57Z-
dc.date.issued2023-01-01-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/23689-
dc.description.abstractIn this paper, an efficient and straightforward numerical procedure is constructed to solve multi-dimensional linear and nonlinear elliptic partial differential equations (PDEs). Although the numerical procedure for the constraint-type fictitious time integration method overcomes the numerical stability problem, the parameter's definition, numerical accuracy and computational efficiency have not been resolved, and the lack of initial guess values results in reduced computational efficiency. Therefore, the normalized two-point boundary value solution of the Lie-group shooting method is proposed and considered in the numerical procedure to avoid the problem of the initial guess value. Then, a space-time variable, including the minimal fictitious time step and convergence rate factor, is introduced to study the relationship between the initial guess value and convergence rate factor. Some benchmark numerical examples are tested. As the results show, this numerical procedure using the normalized boundary value solution can significantly converge within one step, and the numerical accuracy is better than that demonstrated in the previous literature.en_US
dc.language.isoEnglishen_US
dc.publisherMDPIen_US
dc.relation.ispartofMATHEMATICSen_US
dc.subjectboundary solution integrationen_US
dc.subjectnonlinear partial differential equationsen_US
dc.subjectfictitious time integration methoden_US
dc.subjectconstraint-type fictitious time integration methoden_US
dc.subjecttraditional gradient convergence methoden_US
dc.titleA Complete Procedure for a Constraint-Type Fictitious Time Integration Method to Solve Nonlinear Multi-Dimensional Elliptic Partial Differential Equationsen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/math11010213-
dc.identifier.isiWOS:000909391600001-
dc.relation.journalvolume11en_US
dc.relation.journalissue1en_US
dc.identifier.eissn2227-7390-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Maritime Science and Management-
crisitem.author.deptDepartment of Marine Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Maritime Science and Management-
Appears in Collections:輪機工程學系
Show simple item record

Page view(s)

164
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback