Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 機械與機電工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/23843
Title: Ultrasonic-Assisted Innovative Polyurethane Tool to Polish Mold Steel
Authors: Ming-Yi Tsai
Yue-Feng Lin
Jihng-Kuo Ho 
Jing-Guang Yang
Issue Date: Mar-2019
Publisher: FUJI TECHNOLOGY PRESS
Journal Volume: 13
Journal Issue: 2
Start page/Pages: 199-206
Source: IJAT
Abstract: 
High-quality die and mold production is becoming increasingly important in modern mass production. Surface quality is one of the most frequent and stringent customer specifications for machined parts, of which the major consideration and indication of quality is their surface roughness. In this study, a novel ball-ended polishing tool made of polyurethane impregnated with micro cubic boron nitride (CBN) was developed. The polishing tool was mounted on a three-axis machining center; the rotary polishing action was achieved via ultrasonics. Polishing experiments were conducted on specimens of hardened Stavax stainless mold steel. Four types of polishing tools – containing 10 wt% of pure CBN particles and Al2O3 coated CBN with two different degrees of hardness (Shore 25 and 45) – were fabricated; the results of the experiments were compared with those obtained using a traditional elastic-ball polishing tool. It was found that the surface quality achieved using the Al2O3 coated CBN tool was superior to that with pure CBN particles because the hardness of the polishing tool increased with the increase in the surface roughness of the workpiece. In addition, ultrasonic-assisted polishing yielded a better surface finish.
URI: http://scholars.ntou.edu.tw/handle/123456789/23843
DOI: 10.20965/ijat.2019.p0199
Appears in Collections:機械與機電工程學系

Show full item record

Page view(s)

134
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback