Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/23875
Title: High-order histogram-based local clustering patterns in polar coordinate for facial recognition and retrieval
Authors: Lin, Chih-Wei 
Hong, Sidi
Keywords: Facial recognition;Facial retrieval;Local descriptor;Local Clustering Patterns (LCP);Histogram-based;Polar Coordinate;FACE-RECOGNITION;DISCRIMINANT-ANALYSIS;DESCRIPTOR;SCALE;PCA
Issue Date: May-2021
Publisher: SPRINGER
Journal Volume: 38
Journal Issue: 5
Source: The Visual Computer
Abstract: 
Local feature patterns are conspicuous and are widely used in computer vision, especially in face recognition and retrieval. However, a statistical descriptor that can be used in various scenarios and effectively present the detailed local discrimination information of face images is a challenging and exploring task even if deep learning technology is widelyspread. In this study, we propose a novel local pattern descriptor called the Local Clustering Pattern (LCP) in high-order derivative space for facial recognition and retrieval. Unlike prior methods, LCP exploits the concept of clustering to analyze the relationship of intra- and inter-classes of the referenced pixel and its adjacent pixels to encode the local descriptor for facial recognition. There are three tasks (1) Local Clustering Pattern (LCP), (2) Clustering Coding Scheme, (3) High-order Local Clustering Pattern. To generate local clustering pattern, the local derivative variations with multi-direction are considered and that are integrated on rectangular coordinate system with the pairwise combinatorial direction. Moreover, to generate the discriminative local pattern, the features of local derivative variations are transformed from the rectangular coordinate system into the polar coordinate system to generate the characteristics of magnitude (m) and orientation (theta). Then, we shift and project the features (m and theta), which are scattered in the four quadrants of polar coordinate system, into the first quadrant of polar coordinates to strengthen the relationship of intra- and inter-classes of the referenced pixel and its adjacent pixels. To encode the local pattern, we consider the spatial relationship between reference and its adjacent pixels and fuse the clustering algorithm into the coding scheme by utilizing the relationship of intra- and inter-classes in a local patch. In addition, we extend the LCP from low- into high-order derivative space to extract the detailed and abundant information for facial description. LCP efficiently encodes the feature of a local region that is discriminative the inter-classes and robust the intra-class of the related pixels to describe a face image.
URI: http://scholars.ntou.edu.tw/handle/123456789/23875
ISSN: 0178-2789
1432-2315
DOI: 10.1007/s00371-021-02102-9
Appears in Collections:電機工程學系

Show full item record

Page view(s)

129
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback