Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/23880
標題: Neuropsychiatric Disorders Identification Using Convolutional Neural Network
作者: Lin, Chih-Wei 
Ding, Qilu
關鍵字: Neuropsychiatric disorder;Posture motion;Symptoms;Depth sensors;Convolutional neural network
公開日期: 十二月-2018
會議論文: International Conference on Multimedia Modeling
摘要: 
The neuropsychiatric disorders have become a high risk among the elderly group and their group of patients has the tendency of getting younger. However, an efficient computer-aided system with the computer vision technique to detect the neuropsychiatric disorders has not been developed yet. More specifically, there are two critical issues: (1) the postures between various neuropsychiatric disorders are similar, (2) lack of physiotherapists and expensive examinations. In this study, we design an innovative framework which associates a novel two-dimensional feature map with a convolutional neural network to identify the neuropsychiatric disorders. Firstly, we define the seven types of postures to generate the one-dimensional feature vectors (1D-FVs) which can efficiently describe the characteristics of neuropsychiatric disorders. To further consider the relationship between different features, we reshape the features from one-dimensional into two-dimensional to form the feature maps (2D-FMs) based on the periods of pace. Finally, we generate the identification model by associating the 2D-FMs with a convolutional neural network. To evaluate our work, we introduce a new dataset called Simulated Neuropsychiatric Disorders Dataset (SNDD) which contains three kinds of neuropsychiatric disorders and one healthy with 128 videos. In experiments, we evaluate the performance of 1D-FVs with classic classifiers and compare the performance with the gait anomaly feature vectors. In addition, extensive experiments conducting on the proposed novel framework which associates the 2D-FMs with a convolutional neural network is applied to identify the neuropsychiatric disorders.
URI: http://scholars.ntou.edu.tw/handle/123456789/23880
DOI: 10.1007/978-3-030-05716-9_26
顯示於:電機工程學系

顯示文件完整紀錄

Page view(s)

134
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋