Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/2400
Title: Water wave problems using null-field boundary integral equations: ill-posedness and remedies
Authors: Jeng-Tzong Chen 
Jia-Wei Lee
Keywords: fictitious frequency;water wave;null-field BIE;degenerate kernels;modal participation factor;Mathieu functions
Issue Date: 2012
Publisher: Taylor & Francis
Journal Volume: 91
Journal Issue: 4
Start page/Pages: 675-702
Source: Applicable Analysis 
Abstract: 
In this article, we focus on the hydrodynamic scattering of water wave problems containing circular and/or elliptical cylinders. Regarding water wave problems, the phenomena of numerical instability due to fictitious frequencies may appear when the boundary element method (BEM) is used. We examine the occurring mechanism of fictitious frequency in the BEM through a water wave problem containing an elliptical cylinder. In order to study the fictitious frequency analytically, the null-field boundary integral equation method in conjunction with degenerate kernels is employed to derive the analytical solution. The modal participation factor for the numerical instability of zero divided by zero can be exactly determined in a continuous system even though the circulant matrix cannot be obtained in a discrete system for the elliptical case. It is interesting to find that irregular values depend on the geometry of boundaries as well as integral representations and happen to be zeros of the mth-order (even or odd) modified Mathieu functions of the first kind or their derivatives. To avoid using the addition theorem to translate the Bessel functions to the Mathieu functions, the present approach can solve for the water wave problem containing circular and/or elliptical cylinders at the same time in a semi-analytical manner by using the adaptive observer system. The closed-form fundamental solution is expressed in terms of the degenerate kernel in the polar and elliptic coordinates for circular and elliptical cylinders, respectively. Three examples are considered to demonstrate the validity of the present approach, including an elliptical cylinder, two parallel identical elliptical cylinders and one circular cylinder and one elliptical cylinder. Finally, two regularization techniques, the combined Helmholtz interior integral equation formulation method and the Burton and Miller approach, are adopted to alleviate the numerical resonance due to fictitious frequency.
URI: http://scholars.ntou.edu.tw/handle/123456789/2400
ISSN: 1563-504X
DOI: 10.1080/00036811.2011.596480
Appears in Collections:河海工程學系

Show full item record

WEB OF SCIENCETM
Citations

14
Last Week
0
Last month
0
checked on Jun 19, 2023

Page view(s)

184
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback