Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海運暨管理學院
  3. 航運管理學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/24301
DC FieldValueLanguage
dc.contributor.authorTseng, Ming‐Langen_US
dc.contributor.authorHa, Hien Minhen_US
dc.contributor.authorTran, Thi Phuong Thuyen_US
dc.contributor.authorBui, Tat-Daten_US
dc.contributor.authorChen, Chih‐Chengen_US
dc.contributor.authorLin, Chun‐Weien_US
dc.date.accessioned2023-12-13T03:23:48Z-
dc.date.available2023-12-13T03:23:48Z-
dc.date.issued2022-07-
dc.identifier.issn0964-4733-
dc.identifier.issn1099-0836-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/24301-
dc.description.abstractThe circular supply chain has recently received more attention as a relevant solution to effectively tackle environmental issues while simultaneously achieving resource recovery and circular business strategy benefits. This study builds a hierarchical circular supply chain structure from big data including qualitative and quantitative information. This study uses data-driven analysis to clarify circular supply chain trends and opportunities in practice. A valid hierarchical circular supply chain structure is composed of a big dataset. However, the attributes of the hierarchical circular supply chain structure must be explored to identify the opportunities and challenges of the circular supply chain. A combination of data-driven content and cluster analysis, including the fuzzy Delphi method, fuzzy decision-making trials, evaluation laboratories, and the entropy weight method, is utilized to address this gap. The study analyzes a set of five attributes from the literature, and 23 criteria are validated. The results show that resource recovery implementation, Industry 4.0 and digitalization, and reverse supply chain practice pertain to the causal group, while circular business strategy and life cycle sustainability assessment are included in the effect group. The conclusive criteria comprise material efficiency, waste-to-energy, machine learning, e-waste, plastic recycling, and artificial intelligence.en_US
dc.language.isoen_USen_US
dc.publisherWILEYen_US
dc.relation.ispartofBusiness Strategy and the Environmenten_US
dc.titleBuilding a data‐driven circular supply chain hierarchical structure: Resource recovery implementation drives circular business strategyen_US
dc.typejournal articleen_US
dc.identifier.doi10.1002/bse.3009-
dc.identifier.isiWOS:000759085200001-
dc.relation.journalvolume31en_US
dc.relation.journalissue5en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptDepartment of Shipping and Transportation Management-
crisitem.author.deptCollege of Maritime Science and Management-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Maritime Science and Management-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
Appears in Collections:航運管理學系
Show simple item record

Page view(s)

169
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback