Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/24420
DC 欄位值語言
dc.contributor.authorYilin Yanen_US
dc.contributor.authorJun-Wei Hsiehen_US
dc.contributor.authorHui-Fen Chiangen_US
dc.contributor.authorShyi-Chyi Chengen_US
dc.contributor.authorDuan-yu Chenen_US
dc.date.accessioned2024-01-12T08:46:58Z-
dc.date.available2024-01-12T08:46:58Z-
dc.date.issued2014-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/24420-
dc.description.abstractThis paper proposes a novel object classification method which uses the concept of probabilistic latent semantic analysis (pLSA) to overcome the problem of sparse representation in data classification. Sparse representation is widely used and quite successful in many vision-based applications. However, it needs to calculate the sparse reconstruction cost (SRC) of each sample to find the best candidate. Because an optimization process is involved, it is very inefficient. In addition, it uses only the residual and does not consider the arrangement (or distribution) of combination coefficients of visual codes in classification. Thus, it often fails to classify categories if they are similar. In this paper, the pLSA concept is first introduced into the sparse representation to build a new classifier without using the SRC measure. The weakness of the pLSA scheme is the use of EM algorithm for updating the posteriori probability of latent class. Because it is very time-consuming, a novel weighting voting strategy is introduced to improve the pLSA scheme for recognizing objects in real time. The advantages of this classifier are: the accuracy is much higher than the SRC scheme and the efficiency is real-time in data classification. Two applications are demonstrated in this paper to prove the superiority of the new classifier, i.e., vehicle make and model recognition, and action analysis.en_US
dc.language.isoen_USen_US
dc.publisherIEEEen_US
dc.titlePLSA-Based Sparse Representation for Object Classificationen_US
dc.typeconference paperen_US
dc.identifier.doi10.1109/ICPR.2014.232-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypeconference paper-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:資訊工程學系
顯示文件簡單紀錄

Page view(s)

136
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋