Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/24420
Title: PLSA-Based Sparse Representation for Object Classification
Authors: Yilin Yan
Jun-Wei Hsieh
Hui-Fen Chiang
Shyi-Chyi Cheng 
Duan-yu Chen
Issue Date: 2014
Publisher: IEEE
Abstract: 
This paper proposes a novel object classification method which uses the concept of probabilistic latent semantic analysis (pLSA) to overcome the problem of sparse representation in data classification. Sparse representation is widely used and quite successful in many vision-based applications. However, it needs to calculate the sparse reconstruction cost (SRC) of each sample to find the best candidate. Because an optimization process is involved, it is very inefficient. In addition, it uses only the residual and does not consider the arrangement (or distribution) of combination coefficients of visual codes in classification. Thus, it often fails to classify categories if they are similar. In this paper, the pLSA concept is first introduced into the sparse representation to build a new classifier without using the SRC measure. The weakness of the pLSA scheme is the use of EM algorithm for updating the posteriori probability of latent class. Because it is very time-consuming, a novel weighting voting strategy is introduced to improve the pLSA scheme for recognizing objects in real time. The advantages of this classifier are: the accuracy is much higher than the SRC scheme and the efficiency is real-time in data classification. Two applications are demonstrated in this paper to prove the superiority of the new classifier, i.e., vehicle make and model recognition, and action analysis.
URI: http://scholars.ntou.edu.tw/handle/123456789/24420
DOI: 10.1109/ICPR.2014.232
Appears in Collections:資訊工程學系

Show full item record

Page view(s)

136
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback