Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 生命科學院
  3. 食品安全與風險管理研究所
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/24581
DC 欄位值語言
dc.contributor.authorKu, Hao-Hsiangen_US
dc.contributor.authorLung, Ching-Fuen_US
dc.contributor.authorChi, Ching-Hoen_US
dc.date.accessioned2024-03-04T08:53:22Z-
dc.date.available2024-03-04T08:53:22Z-
dc.date.issued2023-11-01-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/24581-
dc.description.abstractTraditional oil quality measurement is mostly based on chemical indicators such as acid value, peroxide value, and p-anisidine value. This process requires specialized knowledge and involves complex steps. Hence, this study designs and proposes a Sesame Oil Quality Assessment Service Platform, which is composed of an Intelligent Sesame Oil Evaluator (ISO Evaluator) and a Cloud Service Platform. Users can quickly assess the quality of sesame oil using this platform. The ISO Evaluator employs Artificial Intelligence of Things (AIoT) sensors to detect changes in volatile gases and the color of the oil during storage. It utilizes deep learning mechanisms, including Artificial Neural Network (ANN), Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM) to determine and evaluate the quality of the sesame oil. Evaluation results demonstrate that the linear discriminant analysis (LDA) value is 95.13. The MQ2, MQ3, MQ4, MQ7, and MQ8 sensors have a positive correlation. The CNN combined with an ANN model achieves a Mean Absolute Percentage Error (MAPE) of 8.1820% for predicting oil quality, while the LSTM model predicts future variations in oil quality indicators with a MAPE of 0.44%. Finally, the designed Sesame Oil Quality Assessment Service Platform effectively addresses issues related to digitization, quality measurement, supply quality observation, and scalability.en_US
dc.language.isoEnglishen_US
dc.publisherMDPIen_US
dc.relation.ispartofFOODSen_US
dc.subjectsesame oilen_US
dc.subjectartificial intelligence of thingsen_US
dc.subjectartificial neural networken_US
dc.subjectconvolutional neural networken_US
dc.subjectlong short-term memoryen_US
dc.subjectdeep learningen_US
dc.titleDesign of an Artificial Intelligence of Things-Based Sesame Oil Evaluator for Quality Assessment Using Gas Sensors and Deep Learning Mechanismsen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/foods12214024-
dc.identifier.isiWOS:001100412600001-
dc.relation.journalvolume12en_US
dc.relation.journalissue21en_US
dc.identifier.eissn2304-8158-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Life Sciences-
crisitem.author.deptInstitute of Food Safety and Risk Management-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Maritime Science and Management-
crisitem.author.deptBachelor Degree Program in Ocean Business Management-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Life Sciences-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Maritime Science and Management-
顯示於:食品安全與風險管理研究所
顯示文件簡單紀錄

Page view(s)

146
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋