Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 生命科學院
  3. 生命科學暨生物科技學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/24639
DC FieldValueLanguage
dc.contributor.authorChen, Shiow-Yien_US
dc.contributor.authorJian, Jhih-Yunen_US
dc.contributor.authorLin, Hsiu-Meien_US
dc.date.accessioned2024-03-05T07:59:17Z-
dc.date.available2024-03-05T07:59:17Z-
dc.date.issued2024/1/5-
dc.identifier.issn0022-5142-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/24639-
dc.description.abstractBACKGROUNDRice, a pivotal global food staple, annually accumulates vast amounts of rice husks, resulting in substantial environmental impact. Exploiting the high silica content in rice husk, our research aimed to recycle this agricultural byproduct to synthesize mesoporous silica nanoparticles (rMSNs). These nanoparticles were further modified to evaluate their potential as effective carriers for cancer drug delivery.RESULTSrMSNs showed high biocompatibility, large surface area and porous structure as MSNs, making them excellent drug carriers. Further modifications were applied to rMSNs, such as the incorporation of the lanthanides europium and gadolinium into rMSNs, making them fluorescent and magnetic for detection and tracking using confocal fluorescence microscopy and magnetic resonance imaging. Additionally, folic acid and aptamer AS1411 were conjugated with rMSNs to enhance the targeting of cancer cells. HeLa cells exhibited higher uptake of camptothecin (CPT)-loaded rMSNs compared to normal fibroblast cells (L929). The linkage of disulfide bonds to rMSNs also allowed CPT to be carried by rMSNs and released intracellularly in the presence of the abundant reducing agent glutathione. The validation of rMSNs in vitro and in vivo proved their practical feasibility.CONCLUSIONOur findings indicate that low-cost rMSNs, derived from recycled agricultural waste, can replace highly valuable MSNs. Functionalized rMSNs exhibit promising capabilities in transporting clinical drugs to specific aberrant tissues and offering dual-targeting and dual-imaging functionalities for enhanced cancer therapy. (c) 2023 Society of Chemical Industry.en_US
dc.language.isoEnglishen_US
dc.publisherWILEYen_US
dc.relation.ispartofJOURNAL OF THE SCIENCE OF FOOD AND AGRICULTUREen_US
dc.subjectaptameren_US
dc.subjectrice husksen_US
dc.subjectmesoporous silica nanoparticlesen_US
dc.subjecteuropiumen_US
dc.subjectgadoliniumen_US
dc.subjectfolic aciden_US
dc.titleFunctionalization of rice husk-derived mesoporous silica nanoparticles for targeted and imaging in cancer drug deliveryen_US
dc.typejournal articleen_US
dc.identifier.doi10.1002/jsfa.13165-
dc.identifier.isiWOS:001136679100001-
dc.identifier.eissn1097-0010-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Life Sciences-
crisitem.author.deptDepartment of Bioscience and Biotechnology-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Life Sciences-
crisitem.author.deptDepartment of Bioscience and Biotechnology-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptBachelor Degree Program in Marine Biotechnology-
crisitem.author.orcid0000-0001-7158-7206-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Life Sciences-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Life Sciences-
crisitem.author.parentorgCollege of Life Sciences-
Appears in Collections:生命科學暨生物科技學系
Show simple item record

Page view(s)

128
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback