Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/2468
標題: Why dual boundary element method is necessary?
作者: Jeng-Tzong Chen 
Ching-Yun Yueh
Yu-Lung Chang
Chun-Chiang Wen
關鍵字: Dual boundary element method;Degenerate boundary;Breakwater;Hypersingular integral equation;Zero-thickness
公開日期: 三月-2017
出版社: ScienceDirect
卷: 76
起(迄)頁: 59-68
來源出版物: Engineering Analysis with Boundary Elements 
摘要: 
Dual boundary integral equation (BIE) was developed for problems containing degenerate boundaries in 1988 by Hong and Chen [Journal of Engineering Mechanics-ASCE, 114, 6, 1988] and was termed the dual boundary element method (BEM) in 1992 by Portela et al. [International Journal for Numerical Methods in Engineering, 33, 6, 1992]. After near 30 years, the dual BIE/BEM for the problem containing a zero-thickness barrier was revisited mathematically to study the rank deficiency from the viewpoint of the updating term and the updating document of singular value decomposition (SVD) [Journal of Mechanics, 31, 5, 2015]. In this paper, we revisit the dual BEM from the physical point of view. Although there is no zero-thickness barrier in the real world, it is always required to simulate a finite-thickness degenerate boundary to be zero-thickness in comparison with sea, air or earth scale. For example, a sheet pile, a screen, a crack problem, a thin airfoil and a breakwater were modeled by the geometry of zero-thickness. The role of the dual BEM is evident since Lafe et al. [Journal of the Hydraulics Division-ASCE, 106, 6, 1980] used the conventional BEM to model the finite-thickness pile wall to geometrically approximate zero-thickness barrier but numerically yielding divergent solution. On the contrary, we physically model the finite-thickness breakwater as a zero-thickness barrier. The breakwater is employed as an illustrative case to demonstrate that the dual BEM simulated by a zero-thickness barrier can yield more acceptable results to match the experiment data in comparison with those of the finite thickness using the conventional BEM. Finally, a single horizontal plate and two dual horizontal plates in vertical direction and in horizontal direction are three illustrative cases to tell you why the dual BEM is necessary not only in mathematics but also in physics.
URI: http://scholars.ntou.edu.tw/handle/123456789/2468
ISSN: 0955-7997
DOI: 10.1016/j.enganabound.2016.11.011
顯示於:河海工程學系

顯示文件完整紀錄

WEB OF SCIENCETM
Citations

10
上周
0
上個月
0
checked on 2021/4/9

Page view(s)

180
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋