Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋中心
  3. 海洋中心
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/24704
Title: Memory-Accelerating Methods for One-Step Iterative Schemes with Lie Symmetry Method Solving Nonlinear Boundary-Value Problem
Authors: Liu, Chein-Shan 
Chang, Chih-Wen
Kuo, Chung-Lun
Keywords: optimal fourth-order one-step iterative schemes;memory-accelerating method;optimal combination function;optimal relaxation factor;Lie symmetry method
Issue Date: 2024
Publisher: MDPI
Journal Volume: 16
Journal Issue: 1
Source: SYMMETRY-BASEL
Abstract: 
In this paper, some one-step iterative schemes with memory-accelerating methods are proposed to update three critical values f '(r), f ''(r), and f '''(r) of a nonlinear equation f(x) = 0 with r being its simple root. We can achieve high values of the efficiency index (E.I.) over the bound 2(2/3) = 1.587 with three function evaluations and over the bound 2(1/2) = 1.414 with two function evaluations. The third-degree Newton interpolatory polynomial is derived to update these critical values per iteration. We introduce relaxation factors into the Dzunic method and its variant, which are updated to render fourth-order convergence by the memory-accelerating technique. We developed six types optimal one-step iterative schemes with the memory-accelerating method, rendering a fourth-order convergence or even more, whose original ones are a second-order convergence without memory and without using specific optimal values of the parameters. We evaluated the performance of these one-step iterative schemes by the computed order of convergence (COC) and the E.I. with numerical tests. A Lie symmetry method to solve a second-order nonlinear boundary-value problem with high efficiency and high accuracy was developed.
URI: http://scholars.ntou.edu.tw/handle/123456789/24704
DOI: 10.3390/sym16010120
Appears in Collections:海洋中心

Show full item record

Page view(s)

151
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback