http://scholars.ntou.edu.tw/handle/123456789/24704| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.author | Liu, Chein-Shan | en_US |
| dc.contributor.author | Chang, Chih-Wen | en_US |
| dc.contributor.author | Kuo, Chung-Lun | en_US |
| dc.date.accessioned | 2024-03-06T03:51:32Z | - |
| dc.date.available | 2024-03-06T03:51:32Z | - |
| dc.date.issued | 2024/1/1 | - |
| dc.identifier.uri | http://scholars.ntou.edu.tw/handle/123456789/24704 | - |
| dc.description.abstract | In this paper, some one-step iterative schemes with memory-accelerating methods are proposed to update three critical values f '(r), f ''(r), and f '''(r) of a nonlinear equation f(x) = 0 with r being its simple root. We can achieve high values of the efficiency index (E.I.) over the bound 2(2/3) = 1.587 with three function evaluations and over the bound 2(1/2) = 1.414 with two function evaluations. The third-degree Newton interpolatory polynomial is derived to update these critical values per iteration. We introduce relaxation factors into the Dzunic method and its variant, which are updated to render fourth-order convergence by the memory-accelerating technique. We developed six types optimal one-step iterative schemes with the memory-accelerating method, rendering a fourth-order convergence or even more, whose original ones are a second-order convergence without memory and without using specific optimal values of the parameters. We evaluated the performance of these one-step iterative schemes by the computed order of convergence (COC) and the E.I. with numerical tests. A Lie symmetry method to solve a second-order nonlinear boundary-value problem with high efficiency and high accuracy was developed. | en_US |
| dc.language.iso | English | en_US |
| dc.publisher | MDPI | en_US |
| dc.relation.ispartof | SYMMETRY-BASEL | en_US |
| dc.subject | optimal fourth-order one-step iterative schemes | en_US |
| dc.subject | memory-accelerating method | en_US |
| dc.subject | optimal combination function | en_US |
| dc.subject | optimal relaxation factor | en_US |
| dc.subject | Lie symmetry method | en_US |
| dc.title | Memory-Accelerating Methods for One-Step Iterative Schemes with Lie Symmetry Method Solving Nonlinear Boundary-Value Problem | en_US |
| dc.type | journal article | en_US |
| dc.identifier.doi | 10.3390/sym16010120 | - |
| dc.identifier.isi | WOS:001151149000001 | - |
| dc.relation.journalvolume | 16 | en_US |
| dc.relation.journalissue | 1 | en_US |
| dc.identifier.eissn | 2073-8994 | - |
| item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
| item.cerifentitytype | Publications | - |
| item.languageiso639-1 | English | - |
| item.fulltext | no fulltext | - |
| item.grantfulltext | none | - |
| item.openairetype | journal article | - |
| crisitem.author.dept | National Taiwan Ocean University,NTOU | - |
| crisitem.author.dept | Center of Excellence for Ocean Engineering | - |
| crisitem.author.dept | Basic Research | - |
| crisitem.author.orcid | 0000-0001-6366-3539 | - |
| crisitem.author.parentorg | National Taiwan Ocean University,NTOU | - |
| crisitem.author.parentorg | Center of Excellence for Ocean Engineering | - |
| 顯示於: | 海洋中心 | |
在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。