Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋中心
  3. 海洋中心
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/24704
DC 欄位值語言
dc.contributor.authorLiu, Chein-Shanen_US
dc.contributor.authorChang, Chih-Wenen_US
dc.contributor.authorKuo, Chung-Lunen_US
dc.date.accessioned2024-03-06T03:51:32Z-
dc.date.available2024-03-06T03:51:32Z-
dc.date.issued2024/1/1-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/24704-
dc.description.abstractIn this paper, some one-step iterative schemes with memory-accelerating methods are proposed to update three critical values f '(r), f ''(r), and f '''(r) of a nonlinear equation f(x) = 0 with r being its simple root. We can achieve high values of the efficiency index (E.I.) over the bound 2(2/3) = 1.587 with three function evaluations and over the bound 2(1/2) = 1.414 with two function evaluations. The third-degree Newton interpolatory polynomial is derived to update these critical values per iteration. We introduce relaxation factors into the Dzunic method and its variant, which are updated to render fourth-order convergence by the memory-accelerating technique. We developed six types optimal one-step iterative schemes with the memory-accelerating method, rendering a fourth-order convergence or even more, whose original ones are a second-order convergence without memory and without using specific optimal values of the parameters. We evaluated the performance of these one-step iterative schemes by the computed order of convergence (COC) and the E.I. with numerical tests. A Lie symmetry method to solve a second-order nonlinear boundary-value problem with high efficiency and high accuracy was developed.en_US
dc.language.isoEnglishen_US
dc.publisherMDPIen_US
dc.relation.ispartofSYMMETRY-BASELen_US
dc.subjectoptimal fourth-order one-step iterative schemesen_US
dc.subjectmemory-accelerating methoden_US
dc.subjectoptimal combination functionen_US
dc.subjectoptimal relaxation factoren_US
dc.subjectLie symmetry methoden_US
dc.titleMemory-Accelerating Methods for One-Step Iterative Schemes with Lie Symmetry Method Solving Nonlinear Boundary-Value Problemen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/sym16010120-
dc.identifier.isiWOS:001151149000001-
dc.relation.journalvolume16en_US
dc.relation.journalissue1en_US
dc.identifier.eissn2073-8994-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6366-3539-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:海洋中心
顯示文件簡單紀錄

Page view(s)

151
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋