Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 通訊與導航工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/24709
標題: Application of linguistic fuzzy neural network to landing control
作者: Chien, Li-Hsiang
Juang, Jih-Gau 
關鍵字: Aircraft landing control;wind disturbance;linguistic fuzzy neural network;adaptive learning;Lyapunov theory
公開日期: 2024
出版社: SAGE PUBLICATIONS LTD
卷: 16
期: 1
來源出版物: ADVANCES IN MECHANICAL ENGINEERING
摘要: 
Most aircraft accidents occurred during the final approach. Wind disturbance is one of the significant factors in these accidents. During the landing phase, the Automatic Landing System (ALS) can help aircraft land safely and significantly reduce the pilot's work loading. Control schemes of the conventional ALS usually use gain-scheduling and traditional PID control techniques. A traditional controller cannot control the aircraft if the weather conditions are beyond the allowed limits. To improve the performance of the landing control, this study applies a linguistic fuzzy neural network (LFNN) to replace the conventional controller of ALS. Adaptive learning rules are proposed to enhance the LFNN control ability. The method used to obtain adaptive learning rules is the Lyapunov stability theory. Moreover, the convergence of the system performance error is proved by the Lyapunov theory. This study also compares previously proposed control schemes in aircraft landing control. Different turbulence strengths are implemented into the flight simulation to make the proposed controller more robust and adaptive to various wind disturbance conditions. The LFNN controller can successfully overcome 75 ft/s wind speed, while the adaptive LFNN can reach 80 ft/s with optimal learning rates. Using optimal convergence theorems, the proposed controller performs better than the controllers trained by a fixed learning rate.
URI: http://scholars.ntou.edu.tw/handle/123456789/24709
ISSN: 1687-8132
DOI: 10.1177/16878132241227115
顯示於:通訊與導航工程學系

顯示文件完整紀錄

Page view(s)

109
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋