Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 通訊與導航工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/24709
Title: Application of linguistic fuzzy neural network to landing control
Authors: Chien, Li-Hsiang
Juang, Jih-Gau 
Keywords: Aircraft landing control;wind disturbance;linguistic fuzzy neural network;adaptive learning;Lyapunov theory
Issue Date: 2024
Publisher: SAGE PUBLICATIONS LTD
Journal Volume: 16
Journal Issue: 1
Source: ADVANCES IN MECHANICAL ENGINEERING
Abstract: 
Most aircraft accidents occurred during the final approach. Wind disturbance is one of the significant factors in these accidents. During the landing phase, the Automatic Landing System (ALS) can help aircraft land safely and significantly reduce the pilot's work loading. Control schemes of the conventional ALS usually use gain-scheduling and traditional PID control techniques. A traditional controller cannot control the aircraft if the weather conditions are beyond the allowed limits. To improve the performance of the landing control, this study applies a linguistic fuzzy neural network (LFNN) to replace the conventional controller of ALS. Adaptive learning rules are proposed to enhance the LFNN control ability. The method used to obtain adaptive learning rules is the Lyapunov stability theory. Moreover, the convergence of the system performance error is proved by the Lyapunov theory. This study also compares previously proposed control schemes in aircraft landing control. Different turbulence strengths are implemented into the flight simulation to make the proposed controller more robust and adaptive to various wind disturbance conditions. The LFNN controller can successfully overcome 75 ft/s wind speed, while the adaptive LFNN can reach 80 ft/s with optimal learning rates. Using optimal convergence theorems, the proposed controller performs better than the controllers trained by a fixed learning rate.
URI: http://scholars.ntou.edu.tw/handle/123456789/24709
ISSN: 1687-8132
DOI: 10.1177/16878132241227115
Appears in Collections:通訊與導航工程學系

Show full item record

Page view(s)

109
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback