Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/2488
標題: Analytical study and numerical experiments for true and spurious eigensolutions of a circular cavity using the real-part dual BEM
作者: Kuo, S. R.
Jeng-Tzong Chen 
Huang, C. X.
關鍵字: real-part dual BEM;spurious eigenvalues and eigenmodes;singular value decomposition method;Bessel function
公開日期: 9-六月-2000
出版社: Wiley-Blackwell
卷: 48
期: 9
起(迄)頁: 1401-1422
來源出版物: International Journal for Numerical Methods in Engineering 
摘要: 
It has been found recently that the multiple reciprocity method (MRM) (Chen and Wong. Engng. Anal. Boundary Elements 1997; 20(1):25–33; Chen. Processings of the Fourth World Congress on Computational Mechanics, Onate E, Idelsohn SR (eds). Argentina, 1998; 106; Chen and Wong. J. Sound Vibration 1998; 217(1): 75–95.) or real‐part BEM (Liou, Chen and Chen. J. Chinese Inst. Civil Hydraulics 1999; 11(2):299–310 (in Chinese)). results in spurious eigenvalues for eigenproblems if only the singular (UT) or hypersingular (LM) integral equation is used. In this paper, a circular cavity is considered as a demonstrative example for an analytical study. Based on the framework of the real‐part dual BEM, the true and spurious eigenvalues can be separated by using singular value decomposition (SVD). To understand why spurious eigenvalues occur, analytical derivation by discretizing the circular boundary into a finite degree‐of‐freedom system is employed, resulting in circulants for influence matrices. Based on the properties of the circulants, we find that the singular integral equation of the real‐part BEM for a circular domain results in spurious eigenvalues which are the zeros of the Bessel functions of the second kind, Yurn:x-wiley:00295981:media:NME947:tex2gif-stack-1 (kρ), while the hypersingular integral equation of the real‐part BEM results in spurious eigenvalues which are the zeros of the derivative of the Bessel functions of the second kind, Yn′(kρ). It is found that spurious eigenvalues exist in the real‐part BEM, and that they depend on the integral representation one uses (singular or hypersingular; single layer or double layer) no matter what the given types of boundary conditions for the interior problem are. Furthermore, spurious modes are proved to be trivial in the circular cavity through analytical derivations. Numerically, they appear to have the same nodal lines of the true modes after normalization with respect to a very small nonzero value. Two examples with a circular domain, including the Neumann and Dirichlet problems, are presented. The numerical results for true and spurious eigensolutions match very well with the theoretical prediction.
URI: http://scholars.ntou.edu.tw/handle/123456789/2488
ISSN: 1097-0207
DOI: 10.1002/1097-0207(20000730)48:9<1401::Aid-nme947>3.0.Co;2-k
顯示於:河海工程學系

顯示文件完整紀錄

Page view(s)

174
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋