Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/2521
Title: An alternatively efficient method (DBEM) for simulating the electrostatic field and levitating force of a MEMS combdrive
Authors: Yunn-Shiuan Liao
Shiang-Woei Chyuan
Jeng-Tzong Chen 
Issue Date: 21-Jun-2004
Publisher: IOP Publishing
Journal Volume: 14
Journal Issue: 8
Start page/Pages: 1258-1269
Source: Journal of Micromechanics and Microengineering 
Abstract: 
For MEMS combdrive design, the reduction of levitating force due to electrostatic fields is very important, and an accurate electrostatic analysis is essential and indispensable. For diverse MEMS combdrive designs, the boundary element method (BEM) has become a better method than the domain-type finite element method (FEM) because the BEM can provide a complete solution in terms of boundary values only, with substantial saving in modeling effort. Since dual BEM (DBEM) has some advantages over conventional BEM for a singularity, the DBEM was used to simulate the fringing of field around the edges of the fixed fingers and movable fingers of MEMS combdrives for diverse design cases. A number of electrostatic problems for typical MEMS combdrive designs were analyzed to check the efficiency and validity of this new technique. It is found that the numerical results computed by coarse mesh DBEM match the reference data from a large refined mesh FEM very well, and the accuracy and performance of DBEM are also better than those of conventional BEM for solving the electric intensity field of MEMS combdrives. By way of the DBEM presented in this paper, an accurate and reasonable electrostatic field can be obtained, and the follow-up control method of levitating force for the MEMS combdrive can be implemented more precisely.
URI: http://scholars.ntou.edu.tw/handle/123456789/2521
ISSN: 1361-6439
DOI: 10.1088/0960-1317/14/8/020
Appears in Collections:河海工程學系

Show full item record

Page view(s)

249
Last Week
1
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback