Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海運暨管理學院
  3. 輪機工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/25248
DC FieldValueLanguage
dc.contributor.authorLin, Ting-Anen_US
dc.contributor.authorLee, Yi-Chenen_US
dc.contributor.authorChang, Wen-Jeren_US
dc.contributor.authorLin, Yann-Horngen_US
dc.date.accessioned2024-11-01T06:26:18Z-
dc.date.available2024-11-01T06:26:18Z-
dc.date.issued2024/3/1-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25248-
dc.description.abstractThis paper proposes an observer-based proportional Derivative (O-BPD) fuzzy controller for uncertain discrete-time nonlinear descriptor systems (NDSs). Representing NDSs with the Takagi-Sugeno fuzzy model (T-SFM), the proportional derivative (PD) feedback method can be utilized in the fuzzy controller design via the Parallel Distributed Compensation (PDC) concept, such that the noncausal problem and impulse behavior are avoided. A fuzzy observer is proposed to obtain unmeasured states to fulfill the PD fuzzy controller. Moreover, uncertainties and transient response performances are taken into account for the NDSs. Then, a stability analysis process and corresponding stability conditions are derived from the Lyapunov theory with the robust control method and the pole constraint. Different from existing research, the Singular Value Decomposition (SVD) and the projection lemma are utilized to transfer the stability conditions into the Linear Matrix Inequation (LMI) form. Because of this reason, the conservatism of the analysis process can be reduced by eliminating the restriction on the positive definite matrix in the Lyapunov function. By giving the proper center and radius parameters of the pole constraint in the O-BPD fuzzy controller design process, the expected transient responses can be obtained for different designers and different practical applications. Finally, the effectiveness and applicability of the proposed O-BPD fuzzy controller are demonstrated by two examples of the simulation.en_US
dc.language.isoEnglishen_US
dc.publisherMDPIen_US
dc.relation.ispartofPROCESSESen_US
dc.subjectTakagi-Sugeno fuzzy modelen_US
dc.subjectdiscrete-time nonlinear descriptor systemsen_US
dc.subjectproportional derivative feedbacken_US
dc.subjectobserver-based controlen_US
dc.subjectuncertaintiesen_US
dc.subjectregional pole placement constrainten_US
dc.titleRobust Observer-Based Proportional Derivative Fuzzy Control Approach for Discrete-Time Nonlinear Descriptor Systems with Transient Response Requirementsen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/pr12030540-
dc.identifier.isiWOS:001192498100001-
dc.relation.journalvolume12en_US
dc.relation.journalissue3en_US
dc.identifier.eissn2227-9717-
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1English-
crisitem.author.deptCollege of Maritime Science and Management-
crisitem.author.deptDepartment of Marine Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0001-5054-8451-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Maritime Science and Management-
Appears in Collections:輪機工程學系
Show simple item record

Page view(s)

70
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback