Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋中心
  3. 海洋中心
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/25252
Title: Enhancing the Spermidine Synthase-Based Polyamine Biosynthetic Pathway to Boost Rapid Growth in Marine Diatom <i>Phaeodactylum tricornutum</i>
Authors: Lin, Hung-Yun 
Liu, Chung-Hsiao
Kang, Yong-Ting
Lin, Sin-Wei
Liu, Hsin-Yun
Lee, Chun-Ting
Liu, Yu-Chen
Hsu, Man-Chun
Chien, Ya-Yun
Hong, Shao-Ming
Cheng, Yun-Hsuan
Hsieh, Bing-You
Lin, Han-Jia 
Keywords: diatoms;spermidine synthase;activity site;rapid growth
Issue Date: 2024
Publisher: MDPI
Journal Volume: 14
Journal Issue: 3
Source: BIOMOLECULES
Abstract: 
Diatoms, efficient carbon capture organisms, contribute to 20% of global carbon fixation and 40% of ocean primary productivity, garnering significant attention to their growth. Despite their significance, the synthesis mechanism of polyamines (PAs), especially spermidine (Spd), which are crucial for growth in various organisms, remains unexplored in diatoms. This study reveals the vital role of Spd, synthesized through the spermidine synthase (SDS)-based pathway, in the growth of the diatom Phaeodactylum tricornutum. PtSDS1 and PtSDS2 in the P. tricornutum genome were confirmed as SDS enzymes through enzyme-substrate selectivity assays. Their distinct activities are governed primarily by the Y79 active site. Overexpression of a singular gene revealed that PtSDS1, PtSDS2, and PtSAMDC from the SDS-based synthesis pathway are all situated in the cytoplasm, with no significant impact on PA content or diatom growth. Co-overexpression of PtSDS1 and PtSAMDC proved essential for elevating Spd levels, indicating multifactorial regulation. Elevated Spd content promotes diatom growth, providing a foundation for exploring PA functions and regulation in diatoms.
URI: http://scholars.ntou.edu.tw/handle/123456789/25252
DOI: 10.3390/biom14030372
Appears in Collections:海洋中心
生命科學暨生物科技學系

Show full item record

Page view(s)

72
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback