Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋中心
  3. 海洋中心
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/25261
Title: Updating to Optimal Parametric Values by Memory-Dependent Methods: Iterative Schemes of Fractional Type for Solving Nonlinear Equations
Authors: Liu, Chein-Shan 
Chang, Chih-Wen
Keywords: nonlinear equation;nonlinear perturbation of Newton method;fractional type iterative schemes;multi-step iterative scheme;memory-dependent method
Issue Date: 2024
Publisher: MDPI
Journal Volume: 12
Journal Issue: 7
Source: MATHEMATICS
Abstract: 
In the paper, two nonlinear variants of the Newton method are developed for solving nonlinear equations. The derivative-free nonlinear fractional type of the one-step iterative scheme of a fourth-order convergence contains three parameters, whose optimal values are obtained by a memory-dependent updating method. Then, as the extensions of a one-step linear fractional type method, we explore the fractional types of two- and three-step iterative schemes, which possess sixth- and twelfth-order convergences when the parameters' values are optimal; the efficiency indexes are 6 and 123, respectively. An extra variable is supplemented into the second-degree Newton polynomial for the data interpolation of the two-step iterative scheme of fractional type, and a relaxation factor is accelerated by the memory-dependent method. Three memory-dependent updating methods are developed in the three-step iterative schemes of linear fractional type, whose performances are greatly strengthened. In the three-step iterative scheme, when the first step involves using the nonlinear fractional type model, the order of convergence is raised to sixteen. The efficiency index also increases to 163, and a third-degree Newton polynomial is taken to update the values of optimal parameters.
URI: http://scholars.ntou.edu.tw/handle/123456789/25261
DOI: 10.3390/math12071032
Appears in Collections:海洋中心

Show full item record

Page view(s)

93
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback