Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 通訊與導航工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/25295
DC FieldValueLanguage
dc.contributor.authorChang, Sheng-, Ien_US
dc.contributor.authorJuang, Jih-Gauen_US
dc.date.accessioned2024-11-01T06:27:40Z-
dc.date.available2024-11-01T06:27:40Z-
dc.date.issued2024/4/1-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25295-
dc.description.abstractThis study proposes a drone application for the net cage aquaculture industry. A visual control structure is applied to the drone to obtain water-quality information surrounding the net cages. This study integrates a hexacopter, camera, onboard computer, flight control board, servo motor, and global positioning system's auto-cruise function to adjust the drone position and control the servo motor retractable sensor to reach the desired target at an accurate location. In object identification, a deep learning neural network is used to identify the net cages. An onboard computer calculates the horizontal distance between the drone and the net cage. A You only look once" (YOLO) neural network is used to detect the net cage images. Considering the hardware calculation speed and ability an onboard computer is applied to process the flight control board and control the drone. In the mission an aerial camera detects targets (net cage) and provides visual information to the drone for the target approaching control process. After executing the water-quality measurement the drone will end the mission and return to the base. This study modifies the architecture of YOLOen_US
dc.language.isoEnglishen_US
dc.publisherMDPIen_US
dc.relation.ispartofAEROSPACEen_US
dc.subjectimage processingen_US
dc.subjectdeep learning neural networken_US
dc.subjectobject identificationen_US
dc.subjectnet cage aquacultureen_US
dc.subjectunmanned aerial vehicleen_US
dc.titleUAV Control Based on Pattern Recognition in Aquaculture Applicationen_US
dc.typejournal articleen_US
dc.identifier.doicompares it with the original model and then finds a proper architecture for this mission. This study aims to assist cage aquaculture operators by using drones to measure water quality which can reduce aquaculture's labor costs.-
dc.identifier.isiWOS:001220592500001-
dc.relation.journalvolume11en_US
dc.relation.journalissue4en_US
dc.identifier.eissn2226-4310-
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1English-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Communications, Navigation and Control Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:通訊與導航工程學系
Show simple item record

Page view(s)

82
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback