Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 通訊與導航工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/25295
Title: UAV Control Based on Pattern Recognition in Aquaculture Application
Authors: Chang, Sheng-, I
Juang, Jih-Gau 
Keywords: image processing;deep learning neural network;object identification;net cage aquaculture;unmanned aerial vehicle
Issue Date: 2024
Publisher: MDPI
Journal Volume: 11
Journal Issue: 4
Source: AEROSPACE
Abstract: 
This study proposes a drone application for the net cage aquaculture industry. A visual control structure is applied to the drone to obtain water-quality information surrounding the net cages. This study integrates a hexacopter, camera, onboard computer, flight control board, servo motor, and global positioning system's auto-cruise function to adjust the drone position and control the servo motor retractable sensor to reach the desired target at an accurate location. In object identification, a deep learning neural network is used to identify the net cages. An onboard computer calculates the horizontal distance between the drone and the net cage. A You only look once" (YOLO) neural network is used to detect the net cage images. Considering the hardware calculation speed and ability an onboard computer is applied to process the flight control board and control the drone. In the mission an aerial camera detects targets (net cage) and provides visual information to the drone for the target approaching control process. After executing the water-quality measurement the drone will end the mission and return to the base. This study modifies the architecture of YOLO
URI: http://scholars.ntou.edu.tw/handle/123456789/25295
DOI: compares it with the original model and then finds a proper architecture for this mission. This study aims to assist cage aquaculture operators by using drones to measure water quality which can reduce aquaculture's labor costs.
Appears in Collections:通訊與導航工程學系

Show full item record

Page view(s)

82
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback