Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/25330
標題: Personal learning material recommendation system for MOOCs based on the LSTM neural network
作者: Tzeng, Jian-Wei
Huang, Nen-Fu
Chen, Yi-Hsien
Huang, Ting-Wei
Su, Yu-Sheng 
關鍵字: MOOCs;AI -based recommender system;Knowledge map;LSTM;Individual learning
公開日期: 2024
出版社: INT FORUM EDUCATIONAL TECHNOLOGY & SOC, NATL TAIWAN NORMAL UNIV
卷: 27
期: 2
起(迄)頁: 25-42
來源出版物: EDUCATIONAL TECHNOLOGY & SOCIETY
摘要: 
Massive open online courses (MOOCs; online courses delivered over the Internet) enable distance learning without time and place constraints. MOOCs are popular; however, active participation level among students who take MOOCs is generally lower than that among students who take in -person courses. Students who take MOOCs often lack guidance, and the courses often fail to provide personalized learning materials. Artificial intelligence (AI) has been applied to manage increasing amounts of learning data in learners' online activity records. Driven by the trend in big data, AI technology has drawn increasing attention in various fields. AI -based recommendation systems (RSs) are powerful tools for improving resource acquisition through supply customization, and they can provide personalized learning materials as study guides. In this study, a personalized learning path for MOOCs based on long short-term memory (LSTM) was proposed to meet students' personal needs for learning. According to students' video -watching behaviors, we proposed an MOOC material RS that identifies students with similar learning behaviors through clustering and then uses the clustering results and the learning paths of each group of students to construct an LSTM model to recommend learning paths. The system's learning path recommendations can effectively improve the online participation of learners, and students who received recommendations progressed from the slow -progress group to the medium -progress or fast -progress group. In addition, the learning attitude questionnaire results indicated that the proposed system not only motivated learners to continue learning and achieve high learning capacity but also supported their study planning according to their individual learning needs.
URI: http://scholars.ntou.edu.tw/handle/123456789/25330
ISSN: 1176-3647
DOI: 10.30191/ETS.202404_27(2).SP03
顯示於:資訊工程學系

顯示文件完整紀錄

Page view(s)

80
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋