Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 機械與機電工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/25443
DC 欄位值語言
dc.contributor.authorSu, Heng-Yien_US
dc.contributor.authorLai, Chia-Chingen_US
dc.date.accessioned2024-11-01T06:30:33Z-
dc.date.available2024-11-01T06:30:33Z-
dc.date.issued2024/3/1-
dc.identifier.issn0093-9994-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25443-
dc.description.abstractModern power grids are characterized by significant penetration of renewable energy sources (RES), variable power demand, and aging transmission infrastructure, all of which contribute to a high degree of operational uncertainty. Such uncertainty complicates the assessment of the static voltage stability in power grids. In response to this challenge, this article proposes a novel deep ensemble learning-based approach to assess the probabilistic voltage stability margin (PVSM) for strengthening the resilience of power grid monitoring. First, the estimation of the PVSM is formulated as a quantile regression problem. Then, an improved deep quantile regression (iDQR) is utilized to generate a set of quantiles under specific nominal proportions. Next, a dynamic deep ensemble learning ((DEL)-E-2) scheme based on diverse iDQR models and an improved Choquet fuzzy integral (iCFI) algorithm is proposed to enhance the overall performance of predictive quantiles for the PVSM. The proposed (DEL)-E-2-based PVSM estimation approach is capable of accommodating system changes in a timely manner, thus providing higher estimation accuracy and stronger adaptability than conventional approaches. A comprehensive numerical study of several test systems is carried out, taking into account uncertain RES and loads, as well as topology changes. The results reveal the impressive performance of the proposed approach in the PVSM assessment.en_US
dc.language.isoEnglishen_US
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INCen_US
dc.relation.ispartofIEEE TRANSACTIONS ON INDUSTRY APPLICATIONSen_US
dc.subjectensemble learningen_US
dc.subjectgrid resilienceen_US
dc.subjectpower grid monitoringen_US
dc.subjectprobabilistic predictionen_US
dc.subjectquantile regressionen_US
dc.subjectrenewable energy sourcesen_US
dc.subjectvoltage stability marginen_US
dc.subjectDeep learningen_US
dc.titleDynamic-Deep-Ensemble-Learning Scheme for Probabilistic Voltage Stability Margin Estimation to Enhance Resilient Power Grid Monitoringen_US
dc.typejournal articleen_US
dc.identifier.doi10.1109/TIA.2023.3288857-
dc.identifier.isiWOS:001191215500098-
dc.relation.journalvolume60en_US
dc.relation.journalissue2en_US
dc.relation.pages2065-2075en_US
dc.identifier.eissn1939-9367-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Mechanical and Mechatronic Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
顯示於:機械與機電工程學系
顯示文件簡單紀錄

Page view(s)

80
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋