Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 機械與機電工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/25443
DC FieldValueLanguage
dc.contributor.authorSu, Heng-Yien_US
dc.contributor.authorLai, Chia-Chingen_US
dc.date.accessioned2024-11-01T06:30:33Z-
dc.date.available2024-11-01T06:30:33Z-
dc.date.issued2024/3/1-
dc.identifier.issn0093-9994-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25443-
dc.description.abstractModern power grids are characterized by significant penetration of renewable energy sources (RES), variable power demand, and aging transmission infrastructure, all of which contribute to a high degree of operational uncertainty. Such uncertainty complicates the assessment of the static voltage stability in power grids. In response to this challenge, this article proposes a novel deep ensemble learning-based approach to assess the probabilistic voltage stability margin (PVSM) for strengthening the resilience of power grid monitoring. First, the estimation of the PVSM is formulated as a quantile regression problem. Then, an improved deep quantile regression (iDQR) is utilized to generate a set of quantiles under specific nominal proportions. Next, a dynamic deep ensemble learning ((DEL)-E-2) scheme based on diverse iDQR models and an improved Choquet fuzzy integral (iCFI) algorithm is proposed to enhance the overall performance of predictive quantiles for the PVSM. The proposed (DEL)-E-2-based PVSM estimation approach is capable of accommodating system changes in a timely manner, thus providing higher estimation accuracy and stronger adaptability than conventional approaches. A comprehensive numerical study of several test systems is carried out, taking into account uncertain RES and loads, as well as topology changes. The results reveal the impressive performance of the proposed approach in the PVSM assessment.en_US
dc.language.isoEnglishen_US
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INCen_US
dc.relation.ispartofIEEE TRANSACTIONS ON INDUSTRY APPLICATIONSen_US
dc.subjectensemble learningen_US
dc.subjectgrid resilienceen_US
dc.subjectpower grid monitoringen_US
dc.subjectprobabilistic predictionen_US
dc.subjectquantile regressionen_US
dc.subjectrenewable energy sourcesen_US
dc.subjectvoltage stability marginen_US
dc.subjectDeep learningen_US
dc.titleDynamic-Deep-Ensemble-Learning Scheme for Probabilistic Voltage Stability Margin Estimation to Enhance Resilient Power Grid Monitoringen_US
dc.typejournal articleen_US
dc.identifier.doi10.1109/TIA.2023.3288857-
dc.identifier.isiWOS:001191215500098-
dc.relation.journalvolume60en_US
dc.relation.journalissue2en_US
dc.relation.pages2065-2075en_US
dc.identifier.eissn1939-9367-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Mechanical and Mechatronic Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
Appears in Collections:機械與機電工程學系
Show simple item record

Page view(s)

80
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback