Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋科學與資源學院
  3. 海洋環境資訊系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/25465
標題: Accurate reconstruction of satellite-derived SST under cloud and cloud-free areas using a physically-informed machine learning approach
作者: Young, Chih-Chieh 
Cheng, Yu-Chien
Lee, Ming-An 
Wu, Jun-Hong
關鍵字: Sea surface temperature;Satellite observation;Cloud;Reconstruction;Physical process;Virtual gauge;Machine learning;TS-RBFNN
公開日期: 2024
出版社: ELSEVIER SCIENCE INC
卷: 313
來源出版物: REMOTE SENSING OF ENVIRONMENT
摘要: 
Sea surface temperature (SST) is an important parameter affecting global climate, weather disasters, and marine resources. Acquiring SST data that covers large areas and spans over long periods is one of the most essential tasks for various scientific research. During the past decades, meteorological satellites (e.g., the Himawari 8) have been able to provide large-scale, high-resolution continuous observations (via a number of visible, nearinfrared, and infrared bands), but have always been affected by active atmospheric activities (i.e., clouds). A detailed literature review on SST analysis or estimation shows that limitations or challenges associated with the existing tools and the state-of-the-art approaches have not been fully resolved yet. Through integrating the knowledge from interdisciplinary domains, hence, we proposed a physically-informed machine learning approach (i.e., a physically-consistent, virtual-gauge approach in the machine learning framework) to elegantly reconstruct daily SSTs under both cloud and cloud-free areas. By this central idea, we developed the TS-RBFNN (i.e., Temporal-Spatial Radial Basis Function Neural Network) and suggested an adequate procedure (with artificial clouds) for model assessment since the data in the cloudy region was unavailable. A systematic study in terms of model implication (i.e., the meaning of network architecture), model validation (i.e., the performance of learning and generalization), and model applications (i.e., in open ocean and coastal seas with different cloud coverage over the four seasons) was conducted. In particular, a pattern similarity analysis (examining SST distributions for several selected sections) and a daily-based error analysis (presenting the variations and distributions of RMSEs for each season) were carried out to clarify the relationship between varying cloud conditions and model performances (inferenced by sunny areas). Overall, the TS-RBFNN would better perform full SST reconstruction with significant improvement up to 60%, compared to the DINEOF (i.e., Data Interpolation Empirical Orthogonal Function). Currently, the TS-RBFNN model is being implemented into the operational system of Taiwan's Central Weather Administration to provide all-weather SST products. In the near future, a long-term societal impact would be expected as the reconstructed SST data could be broadly employed in various scientific applications.
URI: http://scholars.ntou.edu.tw/handle/123456789/25465
ISSN: 0034-4257
DOI: 10.1016/j.rse.2024.114339
顯示於:海洋環境資訊系
環境生物與漁業科學學系

顯示文件完整紀錄

Page view(s)

133
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋