Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/25501
標題: DeepEigen-Tabu: Deep Eigen Network Assisted Probabilistic Tabu Search for Massive MIMO Detection
作者: Lu, Hoang-Yang 
Azizi, S. Pourmohammad 
Cheng, Shyi-Chyi 
關鍵字: Symbols;Massive MIMO;Vectors;Signal to noise ratio;Reliability;Detectors;Bit error rate;Massive multiple-input multiple-output;deep learning;Tabu search;symbol detection
公開日期: 2024
出版社: IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
卷: 73
期: 9
起(迄)頁: 13292-13308
來源出版物: IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
摘要: 
Massive multiple-input multiple-output (MIMO) is a promising technology for enhancing quality of service in communication systems, but deploying numerous antennas increases detection complexity. To address this challenge, this paper introduces a novel detection scheme called DeepEigen-Tabu, combining the deep learning-based eigen network (DeepEigNet) with probabilistic Tabu search (P-TS). In the proposed scheme, DeepEigNet, a deep neural network, is constructed to utilize the eigenvalues and eigenvectors of the channel matrix to provide approximate symbol estimates. Subsequently, these estimates serve as the initialization and are prioritized according to their probabilities of correction to support the P-TS. Furthermore, the P-TS integrates an early stopping mechanism based on correction probabilities to eliminate unnecessary iterations during the Tabu search process. Finally, computer simulations and complexity analysis demonstrate that the proposed DeepEigen-Tabu scheme outperforms existing methods while maintaining lower complexity. For instance, in communication scenarios with both transmit and receive antennas set to 16, the proposed DeepEigen-Tabu method demonstrates savings of approximately signal-to-noise ratio (SNR) 0.8 dB at bit error rate (BER) 10(-3), compared to existing approaches in 4-ary quadrature amplitude modulation (4-QAM) symbol modulation. When the number of antennas is increased to 24 and using 16-QAM, the proposed DeepEigen-Tabu provides an improvement of 0.5 dB in SNR performance. Specifically, the proposed DeepEigen-Tabu not only achieves superior performance, as mentioned earlier, but also incurs a lower computational cost. The performance enhancements can be attributed to the DeepEigNet's provision of effective initialization, along with the early stopping and efficient candidate movement mechanisms employed by the P-TS method.
URI: http://scholars.ntou.edu.tw/handle/123456789/25501
ISSN: 0018-9545
DOI: 10.1109/TVT.2024.3392856
顯示於:資訊工程學系
電機工程學系

顯示文件完整紀錄

Page view(s)

110
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋