Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海運暨管理學院
  3. 航運管理學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/25513
DC 欄位值語言
dc.contributor.authorShih, Yen-Changen_US
dc.contributor.authorLin, Ming-Shueen_US
dc.contributor.authorLirn, Taih-Cherngen_US
dc.contributor.authorJuang, Jih-Gauen_US
dc.date.accessioned2024-11-01T09:18:04Z-
dc.date.available2024-11-01T09:18:04Z-
dc.date.issued2024/1/1-
dc.identifier.issn1023-2796-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25513-
dc.description.abstractIn this study, we have crafted an innovative methodology that represents a groundbreaking synthesis of deep learning techniques with cooperative game theory. In this study, we use the accuracy of data prediction by different LSTM models as a measurement index and assign different LSTM models corresponding weights through the Shapley value calculation method to construct a more accurate predictive analysis model. We use this improved Shapley regulation model to calibrate a long short-term memory (LSTM) neural network by using historical freight data to predict the China Container Freight Index (CCFI), the leading export container freight index commonly used in China. Afterward, it is found that the neural networks calibrated in this way reduce their prediction bias in terms of mean absolute percentage error (MAPE), mean absolute error (MAE), root mean square error (RMSE), and mean square error (MSE) to improve prediction accuracy.en_US
dc.language.isoEnglishen_US
dc.publisherNATL TAIWAN OCEAN UNIVen_US
dc.relation.ispartofJOURNAL OF MARINE SCIENCE AND TECHNOLOGY-TAIWANen_US
dc.subjectNeural networken_US
dc.subjectDeep learningen_US
dc.subjectLong Short Term memory (LSTM)en_US
dc.subjectShapley valueen_US
dc.subjectContainerized freight indexen_US
dc.subjectCooperative gameen_US
dc.titleA New-type Deep Learning Model Based on Shapley Regulation for Containerized Freight Index Predictionen_US
dc.typejournal articleen_US
dc.identifier.doi10.51400/2709-6998.2729-
dc.identifier.isiWOS:001306456500001-
dc.relation.journalvolume32en_US
dc.relation.journalissue1en_US
dc.relation.pages26-40en_US
dc.identifier.eissn2709-6998-
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1English-
crisitem.author.deptCollege of Maritime Science and Management-
crisitem.author.deptDepartment of Shipping and Transportation Management-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Communications, Navigation and Control Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0001-8889-5758-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Maritime Science and Management-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:航運管理學系
通訊與導航工程學系
顯示文件簡單紀錄

Page view(s)

67
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋