Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海運暨管理學院
  3. 輪機工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/25521
Title: Investigation into the Fuel Characteristics of Biodiesel Synthesized through the Transesterification of Palm Oil Using a TiO<sub>2</sub>/CH<sub>3</sub>ONa Nanocatalyst
Authors: Lin, Cherng-Yuan 
Tseng, Shun-Lien
Keywords: biodiesel;fuel characteristics;nanocatalyst;molar ratio;FAME yield
Issue Date: 2024
Publisher: MDPI
Journal Volume: 14
Journal Issue: 9
Source: CATALYSTS
Abstract: 
Biodiesel is a renewable and sustainable alternative fuel to petrol-derived diesel. Decreasing the operating costs by improving the catalyst's characteristics is an effective way to increase the competitiveness of biodiesel in the fuel market. An aqueous solution of sodium methoxide (CH3ONa), which is a traditional alkaline catalyst, was immersed in nanometer-sized particles of titanium dioxide (TiO2) powder to prepare the strong alkaline catalyst TiO2/CH3ONa. The immersion method was used to enhance the transesterification reaction. The mixture of TiO2 and CH3ONa was calcined in a high-temperature furnace in a range between 150 and 450 degrees C continuously for 4 h. The heterogeneous alkaline catalyst TiO2/CH3ONa was then used to catalyze the strong alkaline transesterification reaction of palm oil with methanol. The highest content of fatty acid methyl esters (FAMEs), which amounted to 95.9%, was produced when the molar ratio of methanol to palm oil was equal to 6, and 3 wt.% TiO2/CH3ONa was used, based on the weight of the palm oil. The FAMEs produced from the above conditions were also found to have the lowest kinematic viscosity of 4.17 mm(2)/s, an acid value of 0.32 mg KOH/g oil, and a water content of 0.031 wt.%, as well as the highest heating value of 40.02 MJ/kg and cetane index of 50.05. The lower catalyst amount of 1 wt.%, in contrast, resulted in the lowest cetane index of 49.31. The highest distillation temperature of 355 degrees C was found when 3 wt.% of the catalyst was added to the reactant mixture with a methanol/palm oil molar ratio of 6. The prepared catalyst is considered effective for improving the fuel characteristics of biodiesel.
URI: http://scholars.ntou.edu.tw/handle/123456789/25521
DOI: 10.3390/catal14090623
Appears in Collections:輪機工程學系

Show full item record

Page view(s)

104
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback