Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海運暨管理學院
  3. 輪機工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/25690
DC FieldValueLanguage
dc.contributor.authorWang,Shun-Chungen_US
dc.contributor.authorLiu, Chun-Liangen_US
dc.contributor.authorChen, Guan-Jhuen_US
dc.contributor.authorLiu, Yi-Huaen_US
dc.contributor.authorChen, Jyun-Hongen_US
dc.contributor.authorKao, Yu-Chinen_US
dc.date.accessioned2025-06-04T03:07:39Z-
dc.date.available2025-06-04T03:07:39Z-
dc.date.issued2025-
dc.identifier.issn1452-3981-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25690-
dc.description.abstractLithium-ion batteries are crucial for portable devices like smartphones and laptops, as well as electric vehicles like e-bikes and cars. However, commercial products often opt for simple charging methods without considering the specific demands of different battery states of health. This study evaluates five simple charging methods under varying battery health conditions, based on six performance indicators: maximum temperature rise, average temperature rise, charge capacity, discharge capacity, charge rate, and charge efficiency. The five methods include constant current-constant voltage charging, constant power-constant voltage charging, and constant loss-constant voltage charging. The study also proposes a states of health estimation method for the charging techniques, using a neural network to build a battery states of health estimator. The results show a maximum relative error of 4.12 %, a minimum relative error of 0.1 %, an average relative error of 0.98 %, and a root mean square error of 1.35 %.en_US
dc.publisherELSEVIERen_US
dc.relation.ispartofINTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCEen_US
dc.subjectLithium-ion batteryen_US
dc.subjectConstant power-constant voltage charging methoden_US
dc.subjectConstant loss-constant voltage chargingen_US
dc.subjectBattery state of healthen_US
dc.subjectNeural networken_US
dc.titleEvaluation of low-complexity algorithms for assessing lithium-ion battery charging based on state of health metricsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.ijoes.2025.100946-
dc.identifier.isiWOS:001414286000001-
dc.relation.journalvolume20en_US
dc.relation.journalissue3en_US
item.fulltextno fulltext-
item.openairetypejournal article-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Maritime Science and Management-
crisitem.author.deptDepartment of Marine Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Maritime Science and Management-
Appears in Collections:輪機工程學系
Show simple item record

Page view(s)

44
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback