Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋科學與資源學院
  3. 海洋環境與生態研究所
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/25717
DC FieldValueLanguage
dc.contributor.authorTu, Tzu-Hsuanen_US
dc.contributor.authorLin, En-Juen_US
dc.contributor.authorHung, Chin-Changen_US
dc.contributor.authorChou, Wen-Chenen_US
dc.contributor.authorShih, Yung-Yenen_US
dc.date.accessioned2025-06-05T07:23:12Z-
dc.date.available2025-06-05T07:23:12Z-
dc.date.issued2024/12/29-
dc.identifier.issn0272-7714-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25717-
dc.description.abstractTropical seagrass beds usually exhibit pronounced diel variations in dissolved oxygen (DO) and dissolved organic carbon (DOC) mediated by primary production, respiration, and microbial activities. With near-future climate change scenarios predicting elevated ocean temperatures and more frequent extreme conditions, understanding the mechanisms that influence the DO and DOC dynamics in these ecosystems is crucial. This study examined two seagrass sites with distinct community compositions on Dongsha Island (South China Sea): a semi-closed lagoon dominated by Halodule uninervis, and an open coast dominated by Thalassia hemprichii. Metabolic rates and DOC fluxes were quantified using in situ benthic chambers and active microbial communities were characterized via amplicon sequencing of 16S rRNA transcripts. Seagrass beds predominantly exhibited net autotrophy in summer, shifting toward a heterotrophic state in winter, whereas unvegetated sediments remained net heterotrophic. DOC fluxes varied, with the semi-closed lagoon acting as a net DOC source and the open coast predominantly functioning as a DOC sink, correlating with microbial activity rather than with primary production. Diverse microbial taxa emerged, varying across locations and seasons, and correlated with factors such as organic carbon, temperature, and DO. A surge in microbial activity over diel cycles likely drove the observed night time decline in DO. The contrasting trends in community productivity and DOC production between the two sites were influenced by different seagrass communities and relevant environmental factors. As ocean temperatures continue to rise, the net heterotrophy and sulfidic conditions observed in the lagoon may represent the future for tropical seagrass ecosystems, underscoring the need to maintain coastal water quality and understand microbial community resilience.en_US
dc.language.isoEnglishen_US
dc.publisherACADEMIC PRESS LTD- ELSEVIER SCIENCE LTDen_US
dc.relation.ispartofESTUARINE COASTAL AND SHELF SCIENCEen_US
dc.subjectSeagrassen_US
dc.subjectHypoxiaen_US
dc.subjectDOCen_US
dc.subjectMicrobial activityen_US
dc.subjectSulfate reductionen_US
dc.subjectPrimary productivityen_US
dc.titleThe dissolved oxygen variation in seagrasses is influenced by DOC excretion and its associated microbesen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.ecss.2024.109080-
dc.identifier.isiWOS:001403040900001-
dc.relation.journalvolume313en_US
dc.identifier.eissn1096-0015-
item.openairetypejournal article-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.fulltextno fulltext-
item.languageiso639-1English-
crisitem.author.deptCollege of Ocean Science and Resource-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptInstitute of Marine Environment and Ecology-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Ocean Science and Resource-
Appears in Collections:海洋環境與生態研究所
Show simple item record

Page view(s)

20
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback