Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 機械與機電工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/25724
DC 欄位值語言
dc.contributor.authorSu, Heng-Yien_US
dc.contributor.authorLai, Chia-Chingen_US
dc.date.accessioned2025-06-05T08:16:44Z-
dc.date.available2025-06-05T08:16:44Z-
dc.date.issued2025/3/1-
dc.identifier.issn0093-9994-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25724-
dc.description.abstractAmidst the increasing penetration of intermittent renewable generation and the persistent growth of load demands, voltage stability assumes a pivotal concern in smart grids. The real-time voltage stability assessment (VSA) under time-varying operating conditions becomes paramount. Recent strides in real-time VSA, utilizing intelligent data-driven learning with measurements, mark significant progress. However, a critical and unresolved challenge with purely data-driven methods is their susceptibility to performance degradation, especially in out-of-sample scenarios. To this end, this article presents a physics-informed guided deep learning (PGDL) paradigm for the practical and accurate assessment of voltage stability margins (VSMs), leveraging both physics-based and data-driven techniques. The PGDL architecture includes an improved temporal convolutional network (iTCN) for the automatic extraction of representative temporal features necessary for VSA from measurement data. Additionally, PGDL integrates physics-based features informed by domain-specific knowledge. A feature fusion scheme is then devised to merge deep-learned features with pertinent physics-based attributes. Acknowledging the unique contributions of these feature modalities to VSA, a novel twin attention mechanism (TAM) is proposed to adaptively adjust attention weights, prioritizing learned features and thus optimizing VSA performance. Substantial experiments on power systems of different scales, coupled with comparative analyses against state-of-the-art benchmarks, illustrate the efficacy and merits of the proposed approach.en_US
dc.language.isoEnglishen_US
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INCen_US
dc.relation.ispartofIEEE TRANSACTIONS ON INDUSTRY APPLICATIONSen_US
dc.subjectPower system stabilityen_US
dc.subjectStability criteriaen_US
dc.subjectVoltage measurementen_US
dc.subjectReal-time systemsen_US
dc.subjectConvolutional neural networksen_US
dc.subjectDeep learningen_US
dc.subjectAdaptation modelsen_US
dc.subjectAccuracyen_US
dc.subjectThermal stabilityen_US
dc.subjectPhasor measurement unitsen_US
dc.subjectAttention mechanismen_US
dc.subjectdata-drivenen_US
dc.titleImproving Online Voltage Stability Monitoring in Smart Grids: A Physics-Informed Guided Deep Learning Modelen_US
dc.typejournal articleen_US
dc.identifier.doi10.1109/TIA.2025.3529813-
dc.identifier.isiWOS:001459779300021-
dc.relation.journalvolume61en_US
dc.relation.journalissue2en_US
dc.relation.pages2397-2409en_US
dc.identifier.eissn1939-9367-
item.openairetypejournal article-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.fulltextno fulltext-
item.languageiso639-1English-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Mechanical and Mechatronic Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
顯示於:機械與機電工程學系
顯示文件簡單紀錄

Page view(s)

40
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋