Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋科學與資源學院
  3. 海洋環境資訊系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/25770
DC 欄位值語言
dc.contributor.authorWei, Chih-Chiangen_US
dc.contributor.authorHuang, Rongen_US
dc.date.accessioned2025-06-07T03:24:03Z-
dc.date.available2025-06-07T03:24:03Z-
dc.date.issued2024/12/1-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25770-
dc.description.abstractThis study employed machine learning, specifically deep neural networks (DNNs) and long short-term memory (LSTM) networks, to build a model for estimating acid rain pH levels. The Yangming monitoring station in the Taipei metropolitan area was selected as the research site. Based on pollutant sources from the air mass back trajectory (AMBT) of the HY-SPLIT model, three possible source regions were identified: mainland China and the Japanese islands under the northeast monsoon system (Region C), the Philippines and Indochina Peninsula under the southwest monsoon system (Region R), and the Pacific Ocean under the western Pacific high-pressure system (Region S). Data for these regions were used to build the ANN_AMBT model. The AMBT model provided air mass origin information at different altitudes, leading to models for 50 m, 500 m, and 1000 m (ANN_AMBT_50m, ANN_AMBT_500m, and ANN_AMBT_1000m, respectively). Additionally, an ANN model based only on ground station attributes, without AMBT information (LSTM_No_AMBT), served as a benchmark. Due to the northeast monsoon, Taiwan is prone to severe acid rain events in winter, often carrying external pollutants. Results from these events showed that the LSTM_AMBT_500m model achieved the highest percentages of model improvement rate (MIR), ranging from 17.96% to 36.53% (average 27.92%), followed by the LSTM_AMBT_50m model (MIR 12.94% to 26.42%, average 21.70%), while the LSTM_AMBT_1000m model had the lowest MIR (2.64% to 12.26%, average 6.79%). These findings indicate that the LSTM_AMBT_50m and LSTM_AMBT_500m models better capture pH variation trends, reduce prediction errors, and improve accuracy in forecasting pH levels during severe acid rain events.en_US
dc.language.isoEnglishen_US
dc.publisherMDPIen_US
dc.relation.ispartofWATERen_US
dc.subjectrainen_US
dc.subjectpH valuesen_US
dc.subjectair mass back trajectoryen_US
dc.subjectmachine learningen_US
dc.subjectestimationen_US
dc.subjectTaiwanen_US
dc.titleA Hybrid Approach of Air Mass Trajectory Modeling and Machine Learning for Acid Rain Estimationen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/w16233429-
dc.identifier.isiWOS:001377440500001-
dc.relation.journalvolume16en_US
dc.relation.journalissue23en_US
dc.identifier.eissn2073-4441-
item.fulltextno fulltext-
item.openairetypejournal article-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
crisitem.author.deptCollege of Ocean Science and Resource-
crisitem.author.deptDepartment of Marine Environmental Informatics-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptData Analysis and Administrative Support-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Optoelectronics and Materials Technology-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0002-2965-7538-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Ocean Science and Resource-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:光電與材料科技學系
海洋環境資訊系
顯示文件簡單紀錄

Page view(s)

21
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋