Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋科學與資源學院
  3. 海洋環境與生態研究所
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/25783
Title: Coral growth along a natural gradient of seawater temperature, pH, and oxygen in a nearshore seagrass bed on Dongsha Atoll, Taiwan
Authors: Pezner, Ariel K.
Courtney, Travis A.
Chou, Wen-Chen 
Chu, Hui-Chuan
Frable, Benjamin W.
Kekuewa, Samuel A. H.
Soong, Keryea
Wei, Yi
Andersson, Andreas J.
Issue Date: 2024
Publisher: PUBLIC LIBRARY SCIENCE
Journal Volume: 19
Journal Issue: 10
Source: PLOS ONE
Abstract: 
Coral reefs are facing threats from a variety of global change stressors, including ocean warming, acidification, and deoxygenation. It has been hypothesized that growing corals near primary producers such as macroalgae or seagrass may help to ameliorate acidification and deoxygenation stress, however few studies have explored this effect in situ. Here, we investigated differences in coral growth rates across a natural gradient in seawater temperature, pH, and dissolved oxygen (DO) variability in a nearshore seagrass bed on Dongsha Atoll, Taiwan, South China Sea. We observed strong spatial gradients in temperature (5 degrees C), pH (0.29 pH units), and DO (129 mu mol O2 kg-1) across the 1-kilometer wide seagrass bed. Similarly, diel variability recorded by an autonomous sensor in the shallow seagrass measured diel ranges in temperature, pH, and DO of up to 2.6 degrees C, 0.55, and 204 mu mol O2 kg-1, respectively. Skeletal cores collected from 15 massive Porites corals growing in the seagrass bed at 4 sites revealed no significant differences in coral calcification rates between sites along the gradients. However, significant differences in skeletal extension rate and density suggest that the dynamic temperature, pH, and/or DO variability may have influenced these properties. The lack of differences in coral growth between sites may be because favorable calcification conditions during the day (high temperature, pH, and DO) were proportionally balanced by unfavorable conditions during the night (low temperature, pH, and DO). Alternatively, other factors were simply more important in controlling coral calcification and/or corals were acclimated to the prevailing conditions at each site.
URI: http://scholars.ntou.edu.tw/handle/123456789/25783
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0312263
Appears in Collections:海洋環境與生態研究所

Show full item record

Page view(s)

30
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback