Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 通訊與導航工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/25800
Title: Towards Explainable Artificial Intelligence for GNSS Multipath LSTM Training Models
Authors: Wang, He-Sheng 
Jwo, Dah-Jing 
Gao, Zhi-Hang
Keywords: GNSS;multipath;explainability;layer-wise relevance propagation;long short-term memory
Issue Date: 2025
Publisher: MDPI
Journal Volume: 25
Journal Issue: 3
Source: SENSORS
Abstract: 
This paper addresses the critical challenge of understanding and interpreting deep learning models in Global Navigation Satellite System (GNSS) applications, specifically focusing on multipath effect detection and analysis. As GNSS systems become increasingly reliant on deep learning for signal processing, the lack of model interpretability poses significant risks for safety-critical applications. We propose a novel approach combining Recurrent Neural Networks (RNNs) with Long Short-Term Memory (LSTM) cells with Layer-wise Relevance Propagation (LRP) to create an explainable framework for multipath detection. Our key contributions include: (1) the development of an interpretable LSTM architecture for processing GNSS observables, including multipath variables, carrier-to-noise ratios, and satellite elevation angles; (2) the adaptation of the LRP technique for GNSS signal analysis, enabling attribution of model decisions to specific input features; and (3) the discovery of a correlation between LRP relevance scores and signal anomalies, leading to a new method for anomaly detection. Through systematic experimental validation, we demonstrate that our LSTM model achieves high prediction accuracy across all GNSS parameters while maintaining interpretability. A significant finding emerges from our controlled experiments: LRP relevance scores consistently increase during anomalous signal conditions, with growth rates varying from 7.34% to 32.48% depending on the feature type. In our validation experiments, we systematically introduced signal anomalies in specific time segments of the data sequence and observed corresponding increases in LRP scores: multipath parameters showed increases of 7.34-8.81%, carrier-to-noise ratios exhibited changes of 12.50-32.48%, and elevation angle parameters increased by 16.10%. These results demonstrate the potential of LRP-based analysis for enhancing GNSS signal quality monitoring and integrity assessment. Our approach not only improves the interpretability of deep learning models in GNSS applications but also provides a practical framework for detecting and analyzing signal anomalies, contributing to the development of more reliable and trustworthy navigation systems.
URI: http://scholars.ntou.edu.tw/handle/123456789/25800
DOI: 10.3390/s25030978
Appears in Collections:通訊與導航工程學系

Show full item record

Page view(s)

19
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback