Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 通訊與導航工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/25800
DC 欄位值語言
dc.contributor.authorWang, He-Shengen_US
dc.contributor.authorJwo, Dah-Jingen_US
dc.contributor.authorGao, Zhi-Hangen_US
dc.date.accessioned2025-06-07T06:12:53Z-
dc.date.available2025-06-07T06:12:53Z-
dc.date.issued2025/2/1-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25800-
dc.description.abstractThis paper addresses the critical challenge of understanding and interpreting deep learning models in Global Navigation Satellite System (GNSS) applications, specifically focusing on multipath effect detection and analysis. As GNSS systems become increasingly reliant on deep learning for signal processing, the lack of model interpretability poses significant risks for safety-critical applications. We propose a novel approach combining Recurrent Neural Networks (RNNs) with Long Short-Term Memory (LSTM) cells with Layer-wise Relevance Propagation (LRP) to create an explainable framework for multipath detection. Our key contributions include: (1) the development of an interpretable LSTM architecture for processing GNSS observables, including multipath variables, carrier-to-noise ratios, and satellite elevation angles; (2) the adaptation of the LRP technique for GNSS signal analysis, enabling attribution of model decisions to specific input features; and (3) the discovery of a correlation between LRP relevance scores and signal anomalies, leading to a new method for anomaly detection. Through systematic experimental validation, we demonstrate that our LSTM model achieves high prediction accuracy across all GNSS parameters while maintaining interpretability. A significant finding emerges from our controlled experiments: LRP relevance scores consistently increase during anomalous signal conditions, with growth rates varying from 7.34% to 32.48% depending on the feature type. In our validation experiments, we systematically introduced signal anomalies in specific time segments of the data sequence and observed corresponding increases in LRP scores: multipath parameters showed increases of 7.34-8.81%, carrier-to-noise ratios exhibited changes of 12.50-32.48%, and elevation angle parameters increased by 16.10%. These results demonstrate the potential of LRP-based analysis for enhancing GNSS signal quality monitoring and integrity assessment. Our approach not only improves the interpretability of deep learning models in GNSS applications but also provides a practical framework for detecting and analyzing signal anomalies, contributing to the development of more reliable and trustworthy navigation systems.en_US
dc.language.isoEnglishen_US
dc.publisherMDPIen_US
dc.relation.ispartofSENSORSen_US
dc.subjectGNSSen_US
dc.subjectmultipathen_US
dc.subjectexplainabilityen_US
dc.subjectlayer-wise relevance propagationen_US
dc.subjectlong short-term memoryen_US
dc.titleTowards Explainable Artificial Intelligence for GNSS Multipath LSTM Training Modelsen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/s25030978-
dc.identifier.isiWOS:001419648400001-
dc.relation.journalvolume25en_US
dc.relation.journalissue3en_US
dc.identifier.eissn1424-8220-
item.grantfulltextnone-
item.openairetypejournal article-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextno fulltext-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Communications, Navigation and Control Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Communications, Navigation and Control Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0001-8545-3874-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:通訊與導航工程學系
顯示文件簡單紀錄

Page view(s)

19
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋