Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋中心
  3. 海洋中心
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/25805
Title: Variational Iteration and Linearized Liapunov Methods for Seeking the Analytic Solutions of Nonlinear Boundary Value Problems
Authors: Liu, Chein-Shan 
Li, Botong
Kuo, Chung-Lun
Keywords: nonlinear boundary value problem;boundary shape function method;splitting-linearizing method;modified variational iteration method;Liapunov method
Issue Date: 2025
Publisher: MDPI
Journal Volume: 13
Journal Issue: 3
Source: MATHEMATICS
Abstract: 
The boundary shape function method (BSFM) and the variational iteration method (VIM) are merged together to seek the analytic solutions of nonlinear boundary value problems. The boundary shape function method transforms the boundary value problem to an initial value problem (IVP) for a new variable. Then, a modified variational iteration method (MVIM) is created by applying the VIM to the resultant IVP, which can achieve a good approximate solution to automatically satisfy the prescribed mixed-boundary conditions. By using the Picard iteration method, the existence of a solution is proven with the assumption of the Lipschitz condition. The MVIM is equivalent to the Picard iteration method by a back substitution. Either by solving the nonlinear equations or by minimizing the error of the solution or the governing equation, we can determine the unknown values of the parameters in the MVIM. A nonlocal BSFM is developed, which then uses the MVIM to find the analytic solution of a nonlocal nonlinear boundary value problem. In the second part of this paper, a new splitting-linearizing method is developed to expand the analytic solution in powers of a dummy parameter. After adopting the Liapunov method, linearized differential equations are solved sequentially to derive an analytic solution. Accurate analytical solutions are attainable through a few computations, and some examples involving two boundary layer problems confirm the efficiency of the proposed methods.
URI: http://scholars.ntou.edu.tw/handle/123456789/25805
DOI: 10.3390/math13030354
Appears in Collections:海洋中心

Show full item record

Page view(s)

30
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback