Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋中心
  3. 海洋中心
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/25805
DC 欄位值語言
dc.contributor.authorLiu, Chein-Shanen_US
dc.contributor.authorLi, Botongen_US
dc.contributor.authorKuo, Chung-Lunen_US
dc.date.accessioned2025-06-07T06:12:56Z-
dc.date.available2025-06-07T06:12:56Z-
dc.date.issued2025/2/1-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25805-
dc.description.abstractThe boundary shape function method (BSFM) and the variational iteration method (VIM) are merged together to seek the analytic solutions of nonlinear boundary value problems. The boundary shape function method transforms the boundary value problem to an initial value problem (IVP) for a new variable. Then, a modified variational iteration method (MVIM) is created by applying the VIM to the resultant IVP, which can achieve a good approximate solution to automatically satisfy the prescribed mixed-boundary conditions. By using the Picard iteration method, the existence of a solution is proven with the assumption of the Lipschitz condition. The MVIM is equivalent to the Picard iteration method by a back substitution. Either by solving the nonlinear equations or by minimizing the error of the solution or the governing equation, we can determine the unknown values of the parameters in the MVIM. A nonlocal BSFM is developed, which then uses the MVIM to find the analytic solution of a nonlocal nonlinear boundary value problem. In the second part of this paper, a new splitting-linearizing method is developed to expand the analytic solution in powers of a dummy parameter. After adopting the Liapunov method, linearized differential equations are solved sequentially to derive an analytic solution. Accurate analytical solutions are attainable through a few computations, and some examples involving two boundary layer problems confirm the efficiency of the proposed methods.en_US
dc.language.isoEnglishen_US
dc.publisherMDPIen_US
dc.relation.ispartofMATHEMATICSen_US
dc.subjectnonlinear boundary value problemen_US
dc.subjectboundary shape function methoden_US
dc.subjectsplitting-linearizing methoden_US
dc.subjectmodified variational iteration methoden_US
dc.subjectLiapunov methoden_US
dc.titleVariational Iteration and Linearized Liapunov Methods for Seeking the Analytic Solutions of Nonlinear Boundary Value Problemsen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/math13030354-
dc.identifier.isiWOS:001418561100001-
dc.relation.journalvolume13en_US
dc.relation.journalissue3en_US
dc.identifier.eissn2227-7390-
item.fulltextno fulltext-
item.openairetypejournal article-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6366-3539-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:海洋中心
顯示文件簡單紀錄

Page view(s)

30
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋