Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海運暨管理學院
  3. 航運管理學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/25809
DC 欄位值語言
dc.contributor.authorKurrahman, Taufiken_US
dc.contributor.authorTsai, Feng Mingen_US
dc.contributor.authorLim, Ming K.en_US
dc.contributor.authorSethanan, Kanchanaen_US
dc.contributor.authorTseng, Ming-Langen_US
dc.date.accessioned2025-06-07T06:14:09Z-
dc.date.available2025-06-07T06:14:09Z-
dc.date.issued2025/3/19-
dc.identifier.issn1367-5567-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25809-
dc.description.abstractThis study aims to develop and evaluate generative artificial intelligence (AI) capabilities to enhance green supply chain management (GSCM) in the automotive industry, Indonesia. Prior studies have concentrated on constructing generative AI metrics; however, there is a lack of emphasis on developing the capabilities to address dynamic environmental challenges in GSCM. This study integrates dynamic capabilities view with organisational learning theory and employs the integrated fuzzy Delphi method and fuzzy synthetic evaluation-decision-making trial and evaluation laboratory approach to ascertain the valid attributes to facilitate GSCM improvement. The findings indicate that dynamic knowledge and innovative learning capabilities and reflexive control and measurement capabilities from the perspective of sensing capabilities, as well as co-evolution capabilities from the perspective of seising capabilities, are key capabilities that need to be prioritised to enhance GSCM. In practices, data gathering and analysis for predictive maintenance, and sales and operations strategy identification must be prioritised.en_US
dc.language.isoEnglishen_US
dc.publisherTAYLOR & FRANCIS LTDen_US
dc.relation.ispartofINTERNATIONAL JOURNAL OF LOGISTICS-RESEARCH AND APPLICATIONSen_US
dc.subjectGenerative artificial intelligenceen_US
dc.subjectgreen supply chain managementen_US
dc.subjectsupply chain managementen_US
dc.subjectdynamic capabilities viewen_US
dc.subjectfuzzy Delphi methoden_US
dc.subjectfuzzy synthetic evaluation-DEMATELen_US
dc.titleGenerative AI capabilities for green supply chain management improvement: extended dynamic capabilities viewen_US
dc.typejournal articleen_US
dc.identifier.doi10.1080/13675567.2025.2479006-
dc.identifier.isiWOS:001449130300001-
dc.identifier.eissn1469-848X-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Maritime Science and Management-
crisitem.author.deptDepartment of Shipping and Transportation Management-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptBachelor Degree Program in Ocean Tourism Management-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Maritime Science and Management-
crisitem.author.parentorgCollege of Maritime Science and Management-
顯示於:航運管理學系
顯示文件簡單紀錄

Page view(s)

38
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋